Application of the multi adaptive regression splines to integrate sea level data from altimetry and tide gauges for monitoring extreme sea level events

Article


Gharineiat, Zahra and Deng, Xiaoli. 2015. "Application of the multi adaptive regression splines to integrate sea level data from altimetry and tide gauges for monitoring extreme sea level events." Marine Geodesy. 38 (3), pp. 261-276. https://doi.org/10.1080/01490419.2015.1036183
Article Title

Application of the multi adaptive regression splines to integrate sea level data from altimetry and tide gauges for monitoring extreme sea level events

ERA Journal ID1931
Article CategoryArticle
AuthorsGharineiat, Zahra (Author) and Deng, Xiaoli (Author)
Journal TitleMarine Geodesy
Journal Citation38 (3), pp. 261-276
Number of Pages17
Year2015
Place of PublicationUnited States
ISSN0149-0419
1521-060X
Digital Object Identifier (DOI)https://doi.org/10.1080/01490419.2015.1036183
Web Address (URL)http://www.tandfonline.com/doi/full/10.1080/01490419.2015.1036183
Abstract

This paper determines sea level fields with nonlinear components along the northern coast of Australia using a state-of-the-art approach of the Multi-Adaptive Regression Splines (MARS).The 20 years of data from multi-missions of satellite altimetry (e.g. Topex, Jason-1 and Jason-2)and 14 tide gauges are combined to provide a consistent view of sea levels. The MARS is chosen because it is capable of dividing measured sea levels into distinct time intervals where different linear relationships can be identified, and of weighting individual tide gauge according to the importance of their contributions to predicted sea levels. In the study area, the mean R-squared (R2) of 0.62 and Root Mean Squared (RMS) error of 6.73 cm are obtained from modelling sea levels by MARS. The comparison of the MARS with the multiple-regression shows an improved sea level prediction, as MARS can explain 62% of sea level variance while multiple-regression only accounts for 44% of variance. The predicted sea levels during six tropical cyclones are validated against sea level observations at three independent tide-gauge sites. The comparison results show a strong correlation (~99%) between modelled and observed sea levels, suggesting that the MARS can be used for efficiently monitoring sea level extremes.

Keywordssatellite radar altimetry; tropical cyclone; coastal sea level; multiple regression; multi adaptive regression spline
ANZSRC Field of Research 2020419999. Other environmental sciences not elsewhere classified
370803. Physical oceanography
370899. Oceanography not elsewhere classified
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsUniversity of Newcastle
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q36w1/application-of-the-multi-adaptive-regression-splines-to-integrate-sea-level-data-from-altimetry-and-tide-gauges-for-monitoring-extreme-sea-level-events

  • 1650
    total views
  • 12
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Supplementary Dam Site Selection Using a Geospatial Approach: A Case Study of Wivenhoe Dam
Zytoon, Aseel, Gharineiat, Zahra and Alajarmeh, Omar. 2024. "Supplementary Dam Site Selection Using a Geospatial Approach: A Case Study of Wivenhoe Dam." ISPRS International Journal of Geo-Information. 13 (6). https://doi.org/10.3390/ijgi13060180
Accurate Calculation of Upper Biomass Volume of Single Trees Using Matrixial Representation of LiDAR Data
Tarsha Kurdi, Fayez, Lewandowicz, Elzbieta, Gharineiat, Zahra and Shan, Jie. 2024. "Accurate Calculation of Upper Biomass Volume of Single Trees Using Matrixial Representation of LiDAR Data." Remote Sensing. 16 (12). https://doi.org/10.3390/rs16122220
Modeling the Geometry of Tree Trunks Using LiDAR Data
Tarsha Kurdi, Fayez, Gharineiat, Zahra, Lewandowicz, Elzbieta and Shan, Jie. 2024. "Modeling the Geometry of Tree Trunks Using LiDAR Data." Forests. 15 (2). https://doi.org/10.3390/f15020368
Three-Dimensional Modeling and Visualization of Single Tree LiDAR Point Cloud Using Matrixial Form
Tarsha Kurdi, Fayez, Lewandowicz, Elżbieta, Shan, Jie and Gharineiat, Zahra. 2024. "Three-Dimensional Modeling and Visualization of Single Tree LiDAR Point Cloud Using Matrixial Form." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 17, pp. 3010-3022. https://doi.org/10.1109/JSTARS.2024.3349549
Efficiency of Terrestrial Laser Scanning in Survey Works: Assessment, Modelling, and Monitoring
Tarsha Kurdi, Fayez, Reed, Paul, Gharineiat, Zahra and Awrangjeb, Mohammad. 2023. "Efficiency of Terrestrial Laser Scanning in Survey Works: Assessment, Modelling, and Monitoring." International Journal of Environmental Sciences and Natural Resources. 32 (2). https://doi.org/10.19080/IJESNR.2023.32.556334
3D LoD2 and LoD3 Modelling of Rotating Surface Building of Ornamental Towers starting from LiDAR Data
Lewandowicz, Elzbieta, Tarsha Kurdi, Fayez and Gharineiat, Zahra. 2023. "3D LoD2 and LoD3 Modelling of Rotating Surface Building of Ornamental Towers starting from LiDAR Data." Oniga, Valeria-Ersilia (ed.) Prime Archives in Remote Sensing. India. Vide Leaf.
Torsional behavior of GFRP-reinforced concrete pontoon decks with and without an edge cutout
Manalo, Allan, Yang, Xian, Alajarmeh, Omar, Benmokrane, Brahim, Gharineiat, Zahra, Ebrahimzadeh, Shahrad, Sorbello, Charles-Dean and Weerakoon, Senarath. 2023. "Torsional behavior of GFRP-reinforced concrete pontoon decks with and without an edge cutout." Marine Structures. 88. https://doi.org/10.1016/j.marstruc.2022.103345
Modeling Multi-Rotunda Buildings at LoD3 Level from LiDAR Data
Tarsha Kurdi, Fayez, Lewandowicz, Elzbieta, Gharineiat, Zahra and Shan, Jie. 2023. "Modeling Multi-Rotunda Buildings at LoD3 Level from LiDAR Data." Remote Sensing. 15 (13). https://doi.org/10.3390/rs15133324
Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data
Tarsha Kurdi, Fayez, Amakhchan, Wijdan, Gharineiat, Zahra, Boulaassal, Hakim and Kharki, Omar El. 2023. "Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data." Sensors. 23 (17). https://doi.org/10.3390/s23177360
Construction and Deconstruction: Materials and substances from 'waste'
Burey, Paulomi, Feldman, Jessica, Seligmann, Hannah, Song, Eric, Flynn, Matthew, Helwig, Andreas, Gharineiat, Zahra, Seneviratne, Dinuki, Whiteside, Eliza, Shelley, Tristan, Priesler, Nils, Manalo, Allan, Mirzaghorbanali, Ali, Nourizadeh, Hadi, Roberts, Michae, Nicol, Rose, Redmond, Petrea, Lynch, Mark, Dearnaley, John, ..., Germon, Geoff. 2023. "Construction and Deconstruction: Materials and substances from 'waste'." Chemistry in Australia. (June-August 2023), pp. 16-21.
CNN Based Image Classification of Malicious UAVs
Brown, Jason, Gharineiat, Zahra and Raj, Nawin. 2023. "CNN Based Image Classification of Malicious UAVs." Applied Sciences. 13 (1), pp. 1-13. https://doi.org/10.3390/app13010240
Sea Level Variation around Australia and Its Relation to Climate Indices
Agha Karimi, Armin, Deng, Xiaoli and Andersen, Ole Baltazar. 2019. "Sea Level Variation around Australia and Its Relation to Climate Indices." Marine Geodesy. 42 (5), pp. 469-489. https://doi.org/10.1080/01490419.2019.1629131
Estimating sea level rise around Australia using a new approach to account for low frequency climate signals
Agha Karimi, Armin and Deng, Xiaoli. 2020. "Estimating sea level rise around Australia using a new approach to account for low frequency climate signals." Advances in Space Research. 65 (10), pp. 2324-2338. https://doi.org/10.1016/j.asr.2020.02.002
Mean sea surface and mean dynamic topography determination from Cryosat-2 data around Australia
Agha Karimi, Armin, Andersen, Ole Baltazar and Deng, Xiaoli. 2021. "Mean sea surface and mean dynamic topography determination from Cryosat-2 data around Australia." Advances in Space Research. 68 (2), pp. 1073-1089. https://doi.org/10.1016/j.asr.2020.01.009
Crack Detection in Concrete Structures Using Deep Learning
Golding, Vaughn Peter, Gharineiat, Zahra, Munawar, Hafiz Suliman and Ullah, Fahim. 2022. "Crack Detection in Concrete Structures Using Deep Learning." Sustainability. 14 (13), pp. 1-25. https://doi.org/10.3390/su14138117
A Framework for Burnt Area Mapping and Evacuation Problem Using Aerial Imagery Analysis
Munawar, Hafiz Suliman, Gharineiat, Zahra, Akram, Junaid and Khan, Sara Imran. 2022. "A Framework for Burnt Area Mapping and Evacuation Problem Using Aerial Imagery Analysis." Fire. 5 (4), pp. 1-15. https://doi.org/10.3390/fire5040122
3D LoD2 and LoD3 Modeling of Buildings with Ornamental Towers and Turrets Based on LiDAR Data
Lewandowicz, Elzbieta, Tarsha Kurdi, Fayez and Gharineiat, Zahra. 2022. "3D LoD2 and LoD3 Modeling of Buildings with Ornamental Towers and Turrets Based on LiDAR Data." Remote Sensing. 14 (19), pp. 1-17. https://doi.org/10.3390/rs14194687
Review of Automatic Processing of Topography and Surface Feature Identification LiDAR Data Using Machine Learning Techniques
Gharineiat, Zahra, Tarsha Kurdi, Fayez and Campbell, Glenn. 2022. "Review of Automatic Processing of Topography and Surface Feature Identification LiDAR Data Using Machine Learning Techniques." Remote Sensing. 14 (19), pp. 1-24. https://doi.org/10.3390/rs14194685
Assessment and Prediction of Sea Level Trend in the South Pacific Region
Raj, Nawin, Gharineiat, Zahra, Ahmed, Abul Abrar Masrur and Stepanyants, Yury. 2022. "Assessment and Prediction of Sea Level Trend in the South Pacific Region." Remote Sensing. 14 (4), pp. 1-25. https://doi.org/10.3390/rs14040986
Comparative Approach of Unmanned Aerial Vehicle Restrictions in Controlled Airspaces
McTegg, Stephen, Kurdi, Fayez, Simmons, Shane and Gharineiat, Zahra. 2022. "Comparative Approach of Unmanned Aerial Vehicle Restrictions in Controlled Airspaces." Remote Sensing. 14 (4), pp. 1-30. https://doi.org/10.3390/rs14040822
Automatic Filtering of Lidar Building Point Cloud in Case of Trees Associated to Building Roof
Tarsha Kurdi, Fayez, Gharineiat, Zahra, Campbell, Glenn, Awrangjeb, Mohammad and Dey, Emon Kumar. 2022. "Automatic Filtering of Lidar Building Point Cloud in Case of Trees Associated to Building Roof." Remote Sensing. 14 (2), pp. 1-23. https://doi.org/10.3390/rs14020430
Full series algorithm of automatic building extraction and modelling from LiDAR data
Tarsha Kurdi, Fayez, Gharineiat, Zahra, Campbell, Glenn, Dey, Emon Kumar and Awrangjeb, Mohammad. 2021. "Full series algorithm of automatic building extraction and modelling from LiDAR data." Zhou, Jun, Salvado, Olivier, Sohel, Ferdous, Borges, Paulo and Wang, Shilin (ed.) 2021 International Conference on Digital Image Computing: Techniques and Applications (DICTA 2021). Gold Coast, Australia 29 Nov - 01 Dec 2021 United States.
Anthocyanin retention in Queen Garnet plums during processing and bottling
Pahl, Jessica, Burey, Polly, Lynch, Mark, Helwig, Andreas and Gharineiat, Zahra. 2022. Anthocyanin retention in Queen Garnet plums during processing and bottling. Australia. Fight Food Waste Cooperative Research Centre.
Pressure beneath the foot for older adults using an improved approach
Al-Daffaie, Kadhem, Chong, Albert K. and Gharineiat, Zahra. 2019. "Pressure beneath the foot for older adults using an improved approach." 9th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE 2019). Kota Kinabalu, Malaysia 27 - 28 Apr 2019 United States. https://doi.org/10.1109/ISCAIE.2019.8743653
Random forest machine learning technique for automatic vegetation detection and modelling in LiDAR data
Tarsha Kurdi, Fayez, Amakhchan, Wijdan and Gharineiat, Zahra. 2021. "Random forest machine learning technique for automatic vegetation detection and modelling in LiDAR data." International Journal of Environmental Sciences and Natural Resources. 28 (2). https://doi.org/10.19080/IJESNR.2021.28.556234
Evaluation of multivariate adaptive regression splines and artificial neural network for prediction of mean sea level trend around northern Australian coastlines
Raj, Nawin and Gharineiat, zahra. 2021. "Evaluation of multivariate adaptive regression splines and artificial neural network for prediction of mean sea level trend around northern Australian coastlines." Mathematics. 9 (21), pp. 1-20. https://doi.org/10.3390/math9212696
Plantar Pressure Characteristics in Obese Individuals: A Proposed Methodology
Al-Daffaie, Kadhem, Chong, Albert K. and Gharineiat, Zahra. 2019. "Plantar Pressure Characteristics in Obese Individuals: A Proposed Methodology." 2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC). Singapore 27 - 29 Jul 2019 United States. IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/ICISPC.2019.8935691
Spectral Analysis of Satellite Altimeters and Tide Gauges Data around the Northern Australian Coast
Gharineiat, Zahra and Deng, Xiaoli. 2020. "Spectral Analysis of Satellite Altimeters and Tide Gauges Data around the Northern Australian Coast." Remote Sensing. 12 (1), pp. 1-15. https://doi.org/10.3390/rs12010161
Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast
Gharineiat, Zahra and Deng, Xiaoli. 2018. "Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast." Advances in Space Research. 61 (10), pp. 2540-2554. https://doi.org/10.1016/j.asr.2018.02.038
Coastal altimetry for sea level changes in Northern Australian coastal oceans
Gharineiat, Zahra. 2017. Coastal altimetry for sea level changes in Northern Australian coastal oceans. PhD Thesis Doctor of Philosophy. University of Newcastle.
Observing and modelling the high water level from satellite radar altimetry during tropical cyclones
Deng, Xiaoli, Gharineiat, Zahra, Andersen, Ole B. and Stewart, Mark G.. 2016. "Observing and modelling the high water level from satellite radar altimetry during tropical cyclones." Rizos, Chris and Willis, Pascal (ed.) 2013 IAG Scientific Assembly. Postdam, Germany 01 - 06 Sep 2013 Switzerland. https://doi.org/10.1007/1345_2015_108