Improving productivity of Australian wheat by adapting sowing date and genotype phenology to future climate

Article


Collins, Brian and Chenu, Karine. 2021. "Improving productivity of Australian wheat by adapting sowing date and genotype phenology to future climate." Climate Risk Management. 32. https://doi.org/10.1016/j.crm.2021.100300
Article Title

Improving productivity of Australian wheat by adapting sowing date and genotype phenology to future climate

ERA Journal ID200297
Article CategoryArticle
AuthorsCollins, Brian and Chenu, Karine
Journal TitleClimate Risk Management
Journal Citation32
Article Number100300
Number of Pages18
Year2021
PublisherElsevier
Place of PublicationNetherlands
ISSN2212-0963
Digital Object Identifier (DOI)https://doi.org/10.1016/j.crm.2021.100300
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S2212096321000292
Abstract

With global food demand predicted to grow by 50–80% by 2050, timely strategies are required to best adapt to the projected changes in agriculture. In this study, we illustrated how adaptation strategies not requiring additional inputs (sowing date and genotype choice) could be used to minimise the impact of projected stresses and raise wheat productivity in Australia. Yield and abiotic stresses impacting productivity of wheat crops were quantified in silico for the 1990s (1976–2005) and the 2050s (2036–2065) across the Australian wheatbelt using a modified version of the Agricultural Production Systems sIMulator (APSIM) and 33 Global Circulation Models (GCMs) under the Representative Concentration Pathways (RCP) 8.5. Two adaptation strategies were assessed: adaptation of sowing dates and/or adaptation of cultivars of contrasting phenology (i.e. fast-spring, mid-spring, slow-spring and fast-winter cultivars). For a given cultivar, optimum sowing windows associated with highest long-term yield were projected to shift to earlier dates by 2050 at most locations, with an average shift of 9.6 days for a mid-spring cultivar. Sowing early maturing cultivars enabled further increase in projected yield in major parts of the wheatbelt. In the tested conditions, sowing and cultivar adaptation allowed simulated crops to minimise the impact of abiotic stresses while limiting the shortening of the grain filling period due to global warming. Thanks to CO2 fertilisation and proper adaptation, the frequency of severe frost, heat and drought stress was reduced in all regions, except in the West where severe drought was projected to occur more frequently in the 2050s. This allowed a national yield increase of 4.6% with reduced risk of crop failure at most locations. While the study focused on stress avoidance through adaptations (sowing dates and choice of cultivar phenology), breeding for enhanced drought and heat tolerance appeared promising avenues to further improve wheat productivity.

KeywordsClimate change ; Crop adaptation ; Crop model ; Global warming ; Genotype × environment × management interaction; Maturity type
Article Publishing Charge (APC) FundingOther
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020410199. Climate change impacts and adaptation not elsewhere classified
Byline AffiliationsUniversity of Queensland
Permalink -

https://research.usq.edu.au/item/z63w9/improving-productivity-of-australian-wheat-by-adapting-sowing-date-and-genotype-phenology-to-future-climate

Download files


Published Version
1-s2.0-S2212096321000292-main.pdf
License: CC BY-NC-ND 4.0
File access level: Anyone

  • 11
    total views
  • 5
    total downloads
  • 2
    views this month
  • 2
    downloads this month

Export as

Related outputs

Evaluation of meteorological datasets in estimating the water footprint components of wheat and maize (case study: Qazvin, Iran)
Ramezani-Etedali, Hadi, Gorginpaveh, Faraz, Kakvand, Parisa, Elbeltagi, Ahmed and Collins, Brian. 2024. "Evaluation of meteorological datasets in estimating the water footprint components of wheat and maize (case study: Qazvin, Iran)." AIMS Agriculture and Food. 9 (1), pp. 84-107. https://doi.org/10.3934/agrfood.2024006
Application of inclusive multiple model for the prediction of saffron water footprint
Moshizi, Zahra Gerkani Nezhad, Bazrafshan, Ommolbanin, Ramezani Etedali, Hadi, Esmaeilpour, Yahya and Collins, Brian. 2023. "Application of inclusive multiple model for the prediction of saffron water footprint." Agricultural Water Management. 277. https://doi.org/10.1016/j.agwat.2022.108125
Balancing pre- and post-anthesis growth to maximize water-limited yield in cereals
Borrell, Andrew K., Christopher, John T., Kelly, Alison, Collins, Brian and Chenu, Karine. 2023. "Balancing pre- and post-anthesis growth to maximize water-limited yield in cereals." Field Crops Research. 296. https://doi.org/10.1016/j.fcr.2023.108919
An optimal combination of sowing date and cultivar could mitigate the impact of simultaneous heat and drought on rainfed wheat in arid regions
Deihimfard, Reza, Rahimi-Moghaddam, Sajjad, El-Serehy, Hamed and Collins, Brian. 2023. "An optimal combination of sowing date and cultivar could mitigate the impact of simultaneous heat and drought on rainfed wheat in arid regions." European Journal of Agronomy. 147. https://doi.org/10.1016/j.eja.2023.126848
Superior leaf physiological performance contributes to sustaining the final yield of cotton (Gossypium hirsutum L.) genotypes under terminal heat stress
Sarwar, Muhammad, Saleem, Muhammad Farrukh, Ullah, Najeeb, Ali, Asjad, Collins, Brian, Shahid, Muhammad, Munir, Muhammad Kashif, Chung, Sang-Min and Kumar, Manu. 2023. "Superior leaf physiological performance contributes to sustaining the final yield of cotton (Gossypium hirsutum L.) genotypes under terminal heat stress." Physiology and Molecular Biology of Plants. 29 (5), pp. 739-753. https://doi.org/10.1007/s12298-023-01322-8
Water scarcity assessment in Iran’s agricultural sector using the water footprint concept
Dehghanpir, Shahla, Bazrafshan, Ommolbanin, Ramezani-Etedali, Hadi and Collins, Brian. 2023. "Water scarcity assessment in Iran’s agricultural sector using the water footprint concept." Environment, Development and Sustainability: a multidisciplinary approach to the theory and practice of sustainable development. https://doi.org/10.1007/s10668-023-03852-3
Evaluation of water shortage in wheat production in Iran
Dehghanpir, Shahla, Bazrafshan, Ommolbanin, Ramezani-Etedali, Hadi, Holisaz, Arashk and Collins, Brian. 2023. "Evaluation of water shortage in wheat production in Iran." Iranian Journal of Ecohydrology. 9 (4), pp. 719-732.
A discussion support system to rapidly assess economic and environmental impacts of different sugarcane irrigation practices
Collins, Brian, Attard, Steve, Banhalmi-Zakar, Zsuzsa and Everingham, Yvette. 2023. "A discussion support system to rapidly assess economic and environmental impacts of different sugarcane irrigation practices." Computers and Electronics in Agriculture. 215. https://doi.org/10.1016/j.compag.2023.108380
Frequency of compound hot–dry weather extremes has significantly increased in Australia since 1889
Collins, Brian. 2022. "Frequency of compound hot–dry weather extremes has significantly increased in Australia since 1889 ." Journal of Agronomy and Crop Science. 208 (6), pp. 941-955. https://doi.org/10.1111/jac.12545
Contribution of climate models and APSIM phenological parameters to uncertainties in spring wheat simulations: application of SUFI-2 algorithm in northeast Australia
Collins, Brian, Najeeb, Ullah, Luo, Qunying and Tan, Daniel K. Y.. 2022. "Contribution of climate models and APSIM phenological parameters to uncertainties in spring wheat simulations: application of SUFI-2 algorithm in northeast Australia." Journal of Agronomy and Crop Science. 208 (2), pp. 225-242. https://doi.org/10.1111/jac.12575
Analysis on heat characteristics for summer maize cropping in a semi-arid region
Wang, Zhiwei, Sun, Weiwei, Liu, Xiaoli, Li, Yangyang, Collins, Brian, Ullah, Najeeb and Song, Youhong. 2022. "Analysis on heat characteristics for summer maize cropping in a semi-arid region." Agronomy. 12 (6). https://doi.org/10.3390/agronomy12061435
A cross-scale analysis to understand and quantify effects of photosynthetic enhancement on crop growth and yield across environments
Wu, Alex, Brider, Jason, Busch, Florian A., Chen, Min, Chenu, Karine, Clarke, Victoria C., Collins, Brian, Ermakova, Maria, Evans, John R., Farquhar, Graham D., Forster, Britta, Furbank, Robert T., Groszmann, Michael, Hernandez‐Prieto, Miguel A., Long, Benedict M., McLean, Greg, Potgieter, Andries, Price, G. Dean, Sharwood, Robert E., ..., Hammer, Graeme L.. 2022. "A cross-scale analysis to understand and quantify effects of photosynthetic enhancement on crop growth and yield across environments." Plant, Cell and Environment. 46 (1), pp. 23-44. https://doi.org/10.1111/pce.14453
The Effect of Past Climate Change on the Water Footprint Trend in Saffron at Homogeneous Agroclimatic Regions of Khorasan
Moshizi, zahra Gerkani Nezhad, Bazrafshan, ommolbanin, Ramezani-Etedali, Hadi, Esmaeilpour, yahya and Collins, Brian. 2022. "The Effect of Past Climate Change on the Water Footprint Trend in Saffron at Homogeneous Agroclimatic Regions of Khorasan ." Journal of Saffron Research. 10 (2), pp. 295-311. https://doi.org/10.22077/JSR.2022.5742.1199
Evaluation of CRU TS, GPCC, AgMERRA, and AgCFSR meteorological datasets for estimating climate and crop variables: A case study of maize in Qazvin Province, Iran
Paveh, Faraz Gorgin, Ramezani-Etedali, Hadi and Collins, Brian. 2022. "Evaluation of CRU TS, GPCC, AgMERRA, and AgCFSR meteorological datasets for estimating climate and crop variables: A case study of maize in Qazvin Province, Iran." Journal of Arid Land. 14 (12), pp. 1361-1376. https://doi.org/10.1007/s40333-022-0108-7
Investigating Spatiotemporal Variations of Precipitation across Iran over 1957-2016 using the CRU Gridded Dataset
Ramezani-Etedali, Hadi Ramezani and Ababaei, Behnam. 2021. "Investigating Spatiotemporal Variations of Precipitation across Iran over 1957-2016 using the CRU Gridded Dataset." Modares Civil Engineering journal. 21 (1), pp. 103-117.
Impacts of droughts on rainfall use efficiency in different climatic zones and land uses in Iran
Ahmadaali, Khaled, Damaneh, Hadi Eskandari, Ababaei, Behnam and Damaneh, Hamed Eskandari. 2021. "Impacts of droughts on rainfall use efficiency in different climatic zones and land uses in Iran ." Arabian Journal of Geosciences. 14 (2). https://doi.org/10.1007/s12517-020-06389-1
Limiting transpiration rate in high evaporative demand conditions to improve Australian wheat productivity
Collins, Brian, Chapman, Scott, Hammer, Graeme and Chenu, Karine. 2021. "Limiting transpiration rate in high evaporative demand conditions to improve Australian wheat productivity." In Silico Plants. 3 (1). https://doi.org/10.1093/insilicoplants/diab006
Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change
Stella, Tommaso, Webber, Heidi, Olesen, Jørgen E, Ruane, Alex C, Fronzek, Stefan, Bregaglio, Simone, Mamidanna, Sravya, Bindi, Marco, Collins, Brian, Faye, Babacar, Ferrise, Roberto, Fodor, Nandor, Gabaldón-Leal, Clara, Jabloun, Mohamed, Kersebaum, Kurt-Christian, Lizaso, Jon I, Lorite, Ignacio J, Manceau, Loic, Martre, Pierre, ..., Ewert, Frank. 2021. "Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change." Environmental Research Letters. 16 (10). https://doi.org/10.1088/1748-9326/ac2196
Future climate change could reduce irrigated and rainfed wheat water footprint in arid environment
Deihimfard, Reza, Rahimi-Moghaddam, Sajjad, Collins, Brian and Azizi, Khosro. 2021. "Future climate change could reduce irrigated and rainfed wheat water footprint in arid environment." Science of the Total Environment. 807 (3). https://doi.org/10.1016/j.scitotenv.2021.150991
Functional-structural plant models mission in advancing crop science: opportunities and prospects
Soualiou, Soualihou, Wang, Zhiwei, Sun, Weiwei, de Reffye, Philippe, Collins, Brian, Louarn, Gaëtan and Song, Youhong. 2021. "Functional-structural plant models mission in advancing crop science: opportunities and prospects." Frontiers in Plant Science. 12. https://doi.org/10.3389/fpls.2021.747142
Heat shocks increasingly impede grain filling but have little effect on grain setting across the Australian Wheatbelt
Collins, Behnam and Chenu, Karine. 2020. "Heat shocks increasingly impede grain filling but have little effect on grain setting across the Australian Wheatbelt." Agricultural and Forest Meteorology. 284. https://doi.org/10.1016/j.agrformet.2019.107889
Detection of major weather patterns reduces number of simulations in climate impact studies
Collins, Behnam and Najeeb, Ullah. 2020. "Detection of major weather patterns reduces number of simulations in climate impact studies." Journal of Agronomy and Crop Science. 206 (3), pp. 376-389. https://doi.org/10.1111/jac.12388
Spatio-temporal variations of seven weather variables in Iran: application of CRU TS and GPCC data sets
Ababaei, Behnam. 2020. "Spatio-temporal variations of seven weather variables in Iran: application of CRU TS and GPCC data sets." Irrigation and Drainage. 69 (1), pp. 164-185. https://doi.org/10.1002/ird.2399
The impact of climate variability on water footprint components of rainfed wheat and barley in Qazvin province of Iran
Nazari, Rasta, Ramezani-Etedali, Hadi, Nazari, Bijan and Collins, Brian. 2020. "The impact of climate variability on water footprint components of rainfed wheat and barley in Qazvin province of Iran." Irrigation and Drainage. 69 (4), pp. 826-843. https://doi.org/10.1002/ird.2487
Pan-European multi-crop model ensemble simulations of wheat and grain maize under climate change scenarios
Webber, Heidi, Cooke, Diane Kathleene, Ewert, Frank, Olesen, Jørgen E., Fronzek, Stefan, Ruane, Alex C., Martre, Pierre, Collins, Brian, Bindi, Marco, Ferrise, Roberto, Fodor, Nándor, Gabaldón-Leal, Clara, Gaiser, Thomas, Jabloun, Mohamed, Kersebaum, Kurt, Lizaso, Jon I., Lorite, Ignacio J., Manceau, Loic, Moriondo, Marco, ..., Trombi, Giacomo. 2020. "Pan-European multi-crop model ensemble simulations of wheat and grain maize under climate change scenarios ." Open Data Journal for Agricultural Research. 6, pp. 21-27. https://doi.org/10.18174/odjar.v6i0.16326
Investigating climate change over 1957–2016 in an arid environment with three drought indexes
Ababaei, Behnam and Ramezani-Etedali, Hadi. 2019. "Investigating climate change over 1957–2016 in an arid environment with three drought indexes." Theoretical and Applied Climatology. 137 (3), pp. 2977-2992. https://doi.org/10.1007/s00704-019-02793-0
Optimization of the cropping pattern of main cereals and improving water productivity: application of the water footprint concept
Ramezani-Etedali, Hadi, Ahmadaali, Khaled, Paveh, Faraz and Ababaei, Behnam. 2019. "Optimization of the cropping pattern of main cereals and improving water productivity: application of the water footprint concept." Irrigation and Drainage. 68, pp. 765-777. https://doi.org/10.1002/ird.2362
Using crop growth model stress covariates and AMMI decomposition to better predict genotype by environment interactions
Rincent, R., Malosetti, M., Collins, B., Ababaei, B., Touzy, G., Mini, A., Bogard, M., Martre, P., Le Gouis, J. and van Eeuwijk, F.. 2019. "Using crop growth model stress covariates and AMMI decomposition to better predict genotype by environment interactions." Theoretical and Applied Genetics: international journal of plant breeding research. 132 (12), pp. 3399-3411. https://doi.org/10.1007/s00122-019-03432-y
Direct and indirect costs of frost in the Australian wheatbelt
An-Vo, Duc-Anh, Mushtaq, Shahbaz, Zheng, Bangyou, Christopher, Jack T., Chapman, Scott C. and Chenu, Karine. 2018. "Direct and indirect costs of frost in the Australian wheatbelt." Ecological Economics. 150, pp. 122-136. https://doi.org/10.1016/j.ecolecon.2018.04.008
Economic assessment of various levels of improved wheat post head-emergence frost (PHEF) tolerance breeding options: final technical report
Mushtaq, Shahbaz, An-Vo, Duc-Anh, Stone, Roger C., Christopher, Mandy, Chenu, Karine, Christopher, Jack T., Frederiks, Troy M., Zheng, Bangyou and Chapman, Scott. 2016. Economic assessment of various levels of improved wheat post head-emergence frost (PHEF) tolerance breeding options: final technical report. Australia. Grains Research and Development Corporation.
Diverging importance of drought stress for maize and winter wheat in Europe
Webber, Heidi, Ewert, Frank, Olesen, Jørgen E., Müller, Christoph, Fronzek, Stefan, Ruane, Alex C., Bourgault, Maryse, Martre, Pierre, Ababaei, Behnam, Bindi, Marco, Ferrise, Roberto, Finger, Robert, Fodor, Nándor Fodor, Gabaldón-Leal, Clara, Gaiser, Thomas, Jabloun, Mohamed, Kersebaum, Kurt-Christian, Lizaso, Jon I., Lorite, Ignacio J., ..., Wallach, Daniel. 2018. "Diverging importance of drought stress for maize and winter wheat in Europe." Nature Communications. 9. https://doi.org/10.1038/s41467-018-06525-2
Economic assessment of wheat breeding options for potential improved levels of post head-emergence frost tolerance
Mushtaq, Shahbaz, An-Vo, Duc-Anh, Christopher, Mandy, Zheng, Bangyou, Chenu, Karine, Chapman, Scott C., Christopher, Jack T., Stone, Roger C., Frederiks, Troy M. and Alam, G. M. Monirul. 2017. "Economic assessment of wheat breeding options for potential improved levels of post head-emergence frost tolerance." Field Crops Research. 213, pp. 75-88. https://doi.org/10.1016/j.fcr.2017.07.021
Economic impact of frost in the Australian wheatbelt
An-Vo, D.-A., Mushtaq, S., Zheng, B., Christopher, J. T., Chapman, S. and Chenu, K.. 2015. "Economic impact of frost in the Australian wheatbelt." Tropical Agriculture Conference 2015: Meeting the Productivity Challenge in the Tropics (TropAg2015). Brisbane, Australia 16 - 18 Nov 2015