Ternary Ag 2Se 1−xTex: A Near-Room-Temperature Thermoelectric Material with a Potentially High Figure of Merit

Article


Chen, Jie, Yuan, Hualei, Zhu, Yu-Ke, Zheng, Kun, Ge, Zhen-Hua, Tang, Jun, Zhou, Dali, Yang, Lei and Chen, Zhi-Gang. 2021. "Ternary Ag 2Se 1−xTex: A Near-Room-Temperature Thermoelectric Material with a Potentially High Figure of Merit." Inorganic Chemistry: including bioinorganic chemistry. 60 (18), pp. 14165-14173. https://doi.org/10.1021/acs.inorgchem.1c01563
Article Title

Ternary Ag 2Se 1−xTex: A Near-Room-Temperature Thermoelectric Material with a Potentially High Figure of Merit

ERA Journal ID1525
Article CategoryArticle
AuthorsChen, Jie, Yuan, Hualei, Zhu, Yu-Ke, Zheng, Kun, Ge, Zhen-Hua, Tang, Jun, Zhou, Dali, Yang, Lei and Chen, Zhi-Gang
Journal TitleInorganic Chemistry: including bioinorganic chemistry
Journal Citation60 (18), pp. 14165-14173
Number of Pages9
Year2021
PublisherAmerican Chemical Society
Place of PublicationUnited States
ISSN0020-1669
1520-510X
Digital Object Identifier (DOI)https://doi.org/10.1021/acs.inorgchem.1c01563
Web Address (URL)https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01563
Abstract

Discovering high-performance near-room-temperature thermoelectric materials is extremely imperative to widen the practical application in thermoelectric power generation and refrigeration. Here, ternary Ag2Se1-xTex (x = 0.1, 0.2, 0.3, 0.4, and 0.5) materials are prepared via the wet-mechanical alloying and spark plasma sintering process to investigate their near-room-temperature thermoelectric properties. From density functional theory calculation and single-parabolic-band modeling study, we found that the reduced contribution of Se 4p orbitals to the total density of states decreases the carrier effective mass with increasing Te content, which should enhance the theoretically maximum zT. These calculation results are also verified by the experimental results. Meanwhile, complex microstructures including dislocations, nanograins, high-density boundaries, TeSe substitution, lattice distortions, and localized strain have been observed in ternary Ag2Se1-xTex. These complex microstructures strengthen phonon scattering and in turn lead to ultralow lattice thermal conductivity in the range of 0.21-0.31 W m-1 K-1 in ternary Ag2Se1-xTex at 300 K. Although the increased deformation potential suppresses the carrier mobility, benefiting from the engineered band structures and ultralow lattice thermal conductivity, a high zT of >1 can be potentially obtained in the ternary Ag2Se1-xTex with appropriate carrier concentration. This study indicates that ternary Ag2Se1-xTex is a promising candidate for near-room-temperature thermoelectric applications.

KeywordsCarrier concentration; Density functional theory; Hall mobility; Hole mobility; Microstructure; Sintering; Thermoelectric energy conversion; Thermoelectric equipment; Thermoelectricity
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020400402. Chemical and thermal processes in energy and combustion
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsSichuan University, China
Beijing University of Technology, China
Kunming University of Science and Technology, China
Centre for Future Materials
Permalink -

https://research.usq.edu.au/item/zq504/ternary-ag-2se-1-xtex-a-near-room-temperature-thermoelectric-material-with-a-potentially-high-figure-of-merit

  • 2
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Efficient stepwise carrier concentration optimization in Ge(1+x)−ySbyTe
Lyu, Wanyu, Liu, Weidi, Li, Meng, Shi, Xiaolei, Hong, Min, Chen, Wenyi, Cao, Tianyi, Hu, Boxuan, Chen, Yongqi, Guo, Kai and Chen, Zhi-Gang. 2024. "Efficient stepwise carrier concentration optimization in Ge(1+x)−ySbyTe." Journal of Materials Chemistry C. 12 (44), pp. 18004-18008. https://doi.org/10.1039/d4tc03291h
Stable, Self-Adhesive, and High-Performance Graphene-Oxide-Modified Flexible Ionogel Thermoelectric Films
Sun, Shuai, Shi, Xiao-Lei, Lyu, Wanyu, Hong, Min, Chen, Wenyi, Li, Meng, Cao, Tianyi, Hu, Boxuan, Liu, Qingfeng and Chen, Zhi-Gang. 2024. "Stable, Self-Adhesive, and High-Performance Graphene-Oxide-Modified Flexible Ionogel Thermoelectric Films." Advanced Functional Materials. 34 (39). https://doi.org/10.1002/adfm.202402823
Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe
Wang, Lijun, Shi, Xiao-Lei, Li, Lvzhou, Hong, Min, Lin, Bencai, Miao, Pengcheng, Ding, Jianning, Yuan, Ningyi, Zheng, Shuqi and Chen, Zhi-Gang. 2024. "Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe." Chemistry: An Asian Journal. 19 (10). https://doi.org/10.1002/asia.202400130
Advances in printing techniques for thermoelectric materials and devices
Hong, Min, Sun, Shuai, Lyu, Wanyu, Li, Meng, Liu, Weidi, Shi, Xiao-Lei and Chen, Zhi-Gang. 2023. "Advances in printing techniques for thermoelectric materials and devices." Soft Science. 3 (3).
Solvothermally silver doping boosting the thermoelectric performance of polycrystalline Bi2Te3
Chen, Wen-Yi, Shi, Xiao-Lei, Yang, Qishuo, Li, Meng, Lyu, Wanyu, Liu, Ting, Cao, Tianyi, Hu, Boxuan, Liu, Weidi, Sun, Shuai, Mao, Yuanqing, Dargusch, Matthew, Zou, Jin and Chen, Zhi-Gang. 2023. "Solvothermally silver doping boosting the thermoelectric performance of polycrystalline Bi2Te3." Chemical Engineering Journal. 475. https://doi.org/10.1016/j.cej.2023.146428
Thermoelectric performance of p-type (Bi,Sb)2Te3 incorporating amorphous Sb2S3 nanospheres
Bao, Deyue, Sun, Qiang, Huang, Linsen, Chen, Jie, Tang, Jun, Zhou, Dali, Hong, Min, Yang, Lei and Chen, Zhi-Gang. 2022. "Thermoelectric performance of p-type (Bi,Sb)2Te3 incorporating amorphous Sb2S3 nanospheres." Chemical Engineering Journal. 430 (Part 1), pp. 1-9. https://doi.org/10.1016/j.cej.2021.132738
Realizing Bi-doped α-Cu2Se as a promising near-room- temperature thermoelectric material
Liao, Wang-Wei, Yang, Lei, Chen, Jie, Zhou, Da-Li, Qu, Xian-Lin, Zheng, Kun, Han, Guang, Zhou, Jia-Bei, Hong, Min and Chen, Zhi-Gang. 2019. "Realizing Bi-doped α-Cu2Se as a promising near-room- temperature thermoelectric material." Chemical Engineering Journal. 371, pp. 593-599. https://doi.org/10.1016/j.cej.2019.04.081
Correction: Computer-aided design of high-efficiency GeTe-based thermoelectric devices
Hong, Min, Zheng, Kun, Lyv, Wanyu, Li, Meng, Qu, Xianlin, Sun, Qiang, Xu, Shengduo, Zou, Jin and Chen, Zhi-Gang. 2020. "Correction: Computer-aided design of high-efficiency GeTe-based thermoelectric devices." Energy and Environmental Science. 13 (6), pp. 1896-1896. https://doi.org/10.1039/D0EE90029J
Study of Parameters and Theory of Sucrose Dust Explosion
Jiang, Juju, Li, Xiaoquan, Liang, Siting, Zhong, Yuankun, Yang, Lei, Hao, Peng and Soar, Jeffrey. 2022. "Study of Parameters and Theory of Sucrose Dust Explosion." Energies. 15 (4), pp. 1-13. https://doi.org/10.3390/en15041439
Species diversity of Basidiomycota
He, Mao‑Qiang, Zhao, Rui‑Lin, Liu, Dong‑Mei, Denchev, Teodor T., Begerow, Dominik, Yurkov, Andrey, Kemler, Martin, Millanes, Ana M., Wedin, Mats, McTaggart, Alistair R., Shivas, Roger G., Buyck, Bart, Chen, Jie, Vizzini, Alfredo, Papp, Viktor, Zmitrovich, Ivan V., Davoodian, Naveed and Hyde, Kevin D.. 2022. "Species diversity of Basidiomycota." Fungal Diversity. https://doi.org/10.1007/s13225-021-00497-3
Achieving High-Performance Ge0.92Bi0.08Te Thermoelectrics via LaB6-Alloying-Induced Band Engineering and Multi-Scale Structure Manipulation
Sun, Qiang, Shi, Xiao-Lei, Hong, Min, Yin, Yu, Xu, Sheng-Duo, Chen, Jie, Yang, Lei, Zou, Jin and Chen, Zhi-Gang. 2022. "Achieving High-Performance Ge0.92Bi0.08Te Thermoelectrics via LaB6-Alloying-Induced Band Engineering and Multi-Scale Structure Manipulation." Small. 18 (6). https://doi.org/10.1002/smll.202105923
Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag
Tian, Bang-Zhou, Jiang, Xu-Ping, Chen, Jie, Gao, Han, Wang, Ze-Gao, Tang, Jun, Zhou, Da-Li, Yang, Lei and Chen, Zhi-Gang. 2022. "Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag." Rare Metals. 41 (1), pp. 86-95. https://doi.org/10.1007/s12598-021-01805-1
Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization
Ji, Wenting, Shi, Xiao-Lei, Liu, Wei-Di, Yuan, Hualei, Zheng, Kun, Wan, Biao, Shen, Weixia, Zhang, Zhuangfei, Fang, Chao, Wang, Qianqian, Chen, Liangchao, Zhang, Yuewen, Jia, Xiaopeng and Chen, Zhi-Gang. 2021. "Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization." Nano Energy. 87, pp. 1-11. https://doi.org/10.1016/j.nanoen.2021.106171
Computer-aided design of high-efficiency GeTe-based thermoelectric devices
Hong, Min, Zheng, Kun, Lyv, Wanyu, Li, Meng, Qu, Xianlin, Sun, Qiang, Xu, Shengduo, Zou, Jin and Chen, Zhi-Gang. 2020. "Computer-aided design of high-efficiency GeTe-based thermoelectric devices." Energy and Environmental Science. 13 (6), pp. 1856-1864. https://doi.org/10.1039/D0EE01004A
Enhanced thermoelectric performance in MXene/SnTe nanocomposites synthesized via a facile one-step solvothermal method
Jiang, Xu-Ping, Tian, Bang-Zhou, Sun, Qiang, Li, Xu-Liang, Chen, Jie, Tang, Jun, Zhang, Ping, Yang, Lei and Chen, Zhi-Gang. 2021. "Enhanced thermoelectric performance in MXene/SnTe nanocomposites synthesized via a facile one-step solvothermal method." Journal of Solid State Chemistry. 304. https://doi.org/10.1016/j.jssc.2021.122605
Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells
Qu, Xianlin, He, Yongcai, Qu, Minghao, Ruan, Tianyu, Chu, Feihong, Zheng, Zilong, Ma, Yabin, Chen, Yuanping, Ru, Xiaoning, Xu, Xixiang, Yan, Hui, Wang, Lihua, Zhang, Yongzhe, Hao, Xiaojing, Hameiri, Ziv, Chen, Zhi-Gang, Wang, Lianzhou and Zheng, Kun. 2021. "Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells." Nature Energy. 6 (2), pp. 194-202. https://doi.org/10.1038/s41560-020-00768-4
Achieving enhanced thermoelectric performance of Ca1− x− yLaxSryMnO3 via synergistic carrier concentration optimization and chemical bond engineering
Liu, Taoyi, Chen, Jie, Li, Meng, Han, Guang, Liu, Can, Zhou, Dali, Zou, Jin, Chen, Zhi-Gang and Yang, Lei. 2021. "Achieving enhanced thermoelectric performance of Ca1− x− yLaxSryMnO3 via synergistic carrier concentration optimization and chemical bond engineering." Chemical Engineering Journal. 408. https://doi.org/10.1016/j.cej.2020.127364
Quasi-Vertically Oriented Sb2Se3 Thin-Film Solar Cells with Open-Circuit Voltage Exceeding 500 mV Prepared via Close-Space Sublimation and Selenization
Fan, Ping, Chen, Guo-Jie, Chen, Shuo, Zheng, Zhuang-Hao, Azam, Muhammad, Ahmad, Nafees, Su, Zheng-Hua, Liang, Guang-Xing, Zhang, Xiang-Hua and Chen, Zhi-Gang. 2021. "Quasi-Vertically Oriented Sb2Se3 Thin-Film Solar Cells with Open-Circuit Voltage Exceeding 500 mV Prepared via Close-Space Sublimation and Selenization." ACS Applied Materials and Interfaces. 13 (39), pp. 46671-46680. https://doi.org/10.1021/acsami.1c13223
Simultaneously enhanced strength and plasticity of Ag2Se-based thermoelectric materials endowed by nano-twinned CuAgSe secondary phase
Chen, Jie, Sun, Qiang, Bao, Deyu, Tian, Bang-Zhou, Wang, Zegao, Tang, Jun, Zhou, Dali, Yang, Lei and Chen, Zhi-Gang. 2021. "Simultaneously enhanced strength and plasticity of Ag2Se-based thermoelectric materials endowed by nano-twinned CuAgSe secondary phase." Acta Materialia. 220. https://doi.org/10.1016/j.actamat.2021.117335
Simultaneously optimized thermoelectric performance of n-type Cu2Se alloyed Bi2Te3
Chen, Jie, Bao, Deyu, Sun, Qiang, Liu, Wei-Di, Liu, Can, Tang, Jun, Yang, Lei, Zhou, Dali, Dargusch, Matthew S. and Chen, Zhi-Gang. 2021. "Simultaneously optimized thermoelectric performance of n-type Cu2Se alloyed Bi2Te3." Journal of Solid State Chemistry. 296. https://doi.org/10.1016/j.jssc.2021.121987
Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction
Hao, Derek, Chen, Zhi-gang, Figiela, Monika, Stepniak, Izabela, Wei, Wei and Ni, Bing-Jie. 2021. "Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction." Journal of Materials Science and Technology. 77, pp. 163-168. https://doi.org/10.1016/j.jmst.2020.10.056
Enhanced Thermoelectric Performance of SnTe-Based Materials via Interface Engineering
Tian, Bang-Zhou, Chen, Jie, Jiang, Xu-Ping, Tang, Jun, Zhou, Da-Li, Sun, Qiang, Yang, Lei and Chen, Zhi-Gang. 2021. "Enhanced Thermoelectric Performance of SnTe-Based Materials via Interface Engineering." ACS Applied Materials and Interfaces. 13 (42), pp. 50057-50064. https://doi.org/10.1021/acsami.1c16053
A synergy of strain loading and laser radiation in determining the high-performing electrical transports in the single Cu-doped SnSe microbelt
Zheng, Yunzhi, Shi, Xiao-Lei, Yuan, Hualei, Lu, Siyu, Qu, Xianlin, Liu, Wei-Di, Wang, Lihua, Zheng, Kun, Zou, Jin and Chen, Zhi-Gang. 2020. "A synergy of strain loading and laser radiation in determining the high-performing electrical transports in the single Cu-doped SnSe microbelt." Materials Today Physics. 13. https://doi.org/10.1016/j.mtphys.2020.100198
High Thermoelectric Performance in p-type Polycrystalline Cd-doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering
Shi, Xiaolei, Wu, Angyin, Feng, Tianli, Zheng, Kun, Liu, Weidi, Sun, Qiang, Hong, Min, Pantelides, Sokrates T., Chen, Zhi-Gang and Zou, Jin. 2019. "High Thermoelectric Performance in p-type Polycrystalline Cd-doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering." Advanced Energy Materials. 9 (11), pp. 1-15. https://doi.org/10.1002/aenm.201803242
Recovery TiO2 and sodium titanate nanowires as Cd(II) adsorbent from waste V2O5-WO3/TiO2 selective catalytic reduction catalysts by Na2CO3-NaCl-KCl molten salt roasting method
Song, Chengsheng, Zhou, Dali, Yang, Lei, Zhou, Jiabei, Liu, Can and Chen, Zhi-Gang. 2018. "Recovery TiO2 and sodium titanate nanowires as Cd(II) adsorbent from waste V2O5-WO3/TiO2 selective catalytic reduction catalysts by Na2CO3-NaCl-KCl molten salt roasting method." Journal of the Taiwan Institute of Chemical Engineers. 88, pp. 226-233. https://doi.org/10.1016/j.jtice.2018.04.006
Achieving high thermoelectric performance of Ni/Cu modified Bi0.5Sb1.5Te3 composites by a facile electroless plating
Huang, Zhong-Yue, Zhang, He, Yang, Lei, Zhu, Bin, Zheng, Kun, Hong, Min, Yu, Yuan, Zu, Fang-Qiu, Zou, Jin and Chen, Zhi-Gang. 2018. "Achieving high thermoelectric performance of Ni/Cu modified Bi0.5Sb1.5Te3 composites by a facile electroless plating." Materials Today Energy. 9, pp. 383-390. https://doi.org/10.1016/j.mtener.2018.06.011
Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering
Shi, Xiaolei, Zheng, Kun, Hong, Min, Liu, Weidi, Moshwan, Raza, Wang, Yuan, Qu, Xianlin, Chen, Zhi-Gang and Zou, Jin. 2018. "Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering." Chemical Science. 9 (37), pp. 7376-7389. https://doi.org/10.1039/C8SC02397b
Realizing High Thermoelectric Performance in n-Type Highly Distorted Sb-Doped SnSe Microplates via Tuning High Electron Concentration and Inducing Intensive Crystal Defects
Shi, Xiao-Lei, Zheng, Kun, Liu, Wei-Di, Wang, Yuan, Yang, Yu-Zhe, Chen, Zhi-Gang and Zou, Jin. 2018. "Realizing High Thermoelectric Performance in n-Type Highly Distorted Sb-Doped SnSe Microplates via Tuning High Electron Concentration and Inducing Intensive Crystal Defects." Advanced Energy Materials. 8 (21), pp. 1-12. https://doi.org/10.1002/aenm.201800775