High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops
Article
Article Title | High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops |
---|---|
ERA Journal ID | 2587 |
Article Category | Article |
Authors | Gunasinghe, Niroshini (Author), You, Ming Pei (Author), Surinder, Banga S. (Author) and Barbetti, Martin J. (Author) |
Journal Title | European Journal of Plant Pathology |
Journal Citation | 138 (4), pp. 873-890 |
Number of Pages | 18 |
Year | 2014 |
Publisher | Springer |
Place of Publication | Netherlands |
ISSN | 0929-1873 |
1573-8469 | |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s10658-013-0360-y |
Web Address (URL) | http://link.springer.com/article/10.1007/s10658-013-0360-y |
Abstract | Field and controlled environment studies were undertaken to define the range and extent of available host resistances to Pseudocercosporella capsellae (white leaf spot) across diverse oilseed, forage and vegetable crucifers, including some wild and/or weedy species, and also within and/or derived from Brassica carinata. In each experiment, there was a wide range in host response from high resistance to high susceptibility as assessed by four disease parameters, viz. in the field for: (i) Area Under Disease Progress Curve (AUDPC) for percent leaves diseased with values ranging from 0 to 375.5; (ii) Percent Leaf Collapse Index (%LCI) for leaf collapse due to disease with values ranging from 0 to 23.0; and (iii), Percent Pod Area Disease Index (%PADI) for pod area affected with values ranging from 0 to 52.1; and (iv) under controlled environmental conditions for Percent Cotyledon Disease Index (%CDI) for cotyledon lesion size with values ranging from 0 to 27.5. At the Crawley field site, B. carinata ATC 94129 was the most resistant genotype with AUDPC = 1.2, followed by Crambe abyssinica (AUDPC 8.7), Eruca sativa Eruc-01 (AUDPC 19.3) and E. vesicaria Yellow rocket (AUDPC 19.4). B. carinata ATC 94129 and B. oleracea var. capitata had the least leaf collapse, with %LCI = 0.2. At the Shenton Park field site, 21 genotypes of B. carinata and B. oleracea var. acephala Tuscan kale showed total resistance, all with AUDPC values of 0. Of the B. napus genotypes carrying one or more B. carinata B genome introgressions, genotypes NC8 (AUDPC 23.0) and NC9-1 (AUDPC 26.2) were the most resistant. Genotypes as assessed on these disease criteria as having high level resistance generally showed no pod infection; in contrast to %PADI values up to 52 on the most susceptible genotypes. Under controlled environmental conditions, the most resistant genotype was B. carinata ATC 94129 with %CDI values of 0 and 0.2, respectively, across two experiments, along with B. napus genotypes Zhongyou 821 and Hyola 42, with a %CDI value of 0 in one of the two experiments. There was a high degree of correlation both within individual experiments across the different disease parameters and also between field and controlled environment experiments. Within both B. napus and B. juncea genotypes tested, the most resistant genotypes were from China, the most susceptible from India, with those from Australia intermediate. |
Keywords | Pseudocercosporella capsellae; white leaf spot; brassica; host resistance |
ANZSRC Field of Research 2020 | 309999. Other agricultural, veterinary and food sciences not elsewhere classified |
Public Notes | File reproduced in accordance with the copyright policy of the publisher/author. |
Byline Affiliations | University of Western Australia |
Punjab Agricultural University, India | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q3x5y/high-level-resistance-to-pseudocercosporella-capsellae-offers-new-opportunities-to-deploy-host-resistance-to-effectively-manage-white-leaf-spot-disease-across-major-cruciferous-crops
1452
total views12
total downloads1
views this month0
downloads this month
Export as
Related outputs
Diversity and pathogenicity of Fusarium spp. isolated from cultivated sorghum stems and roots in eastern Australia
Gunasinghe, Niroshini, Vaghefi, Niloofar, Shivas, Roger G., Tan, Yu Pei, Jordan, David, Mace, Emma and Martin, Anke. 2024. "Diversity and pathogenicity of Fusarium spp. isolated from cultivated sorghum stems and roots in eastern Australia." Plant Pathology. 73 (9), pp. 2563-2573. https://doi.org/10.1111/ppa.13985First report of Fusarium madaense as a cause of root and stalk rot on Sorghum bicolor in Australia
Gunasinghe, N., Vaghefi, N., Shivas, R. G., Tan, Y. P., Jordan, D., Mace, E., Cruickshank, A. and Martin, A.. 2023. "First report of Fusarium madaense as a cause of root and stalk rot on Sorghum bicolor in Australia." New Disease Reports. 47 (2). https://doi.org/10.1002/ndr2.12192IMA Genome - F16 Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta
Wingfield, Brenda D., De Vos, Lieschen, Wilson, Andi M., Duong, Tuan A., Vaghefi, Niloofar, Botes, Angela, Kharwar, Ravindra Nath, Chand, Ramesh, Poudel, Barsha, Aliyu, Habibu, Barbetti, Martin J., Chen, ShuaiFei, de Maayer, Pieter, Liu, FeiFei, Navathe, Sudhir, Sinha, Shagun, Steenkamp, Emma T., Suzuki, Hiroyuki, Tshisekedi, Kalonji A., ..., Wingfield, Michael J.. 2022. "IMA Genome - F16 Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta." IMA Fungus: the global mycological journal. 13 (1), pp. 1-22. https://doi.org/10.1186/s43008-022-00089-zFirst Report of Powdery Mildew Caused by Erysiphe cruciferarum on Brassica campestris var. pekinensis, B. carinata, Eruca sativa, E. vesicaria in Australia and on B. rapa and B. oleracea var. capitata in Western Australia
Gunasinghe, Niroshini, You, M. P., Lanoiselet, V., Eyres, N. and Barbetti, M. J.. 2013. "First Report of Powdery Mildew Caused by Erysiphe cruciferarum on Brassica campestris var. pekinensis, B. carinata, Eruca sativa, E. vesicaria in Australia and on B. rapa and B. oleracea var. capitata in Western Australia." Plant Disease: an international journal of applied plant pathology. 97 (9), pp. 1256-1256. https://doi.org/10.1094/PDIS-03-13-0299-PDNGenetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading
Kamaral, Chandima, Neate, Stephen M., Gunasinghe, Niroshini, Milham, Paul J., Paterson, David J., Kopittke, Peter M. and Seneweera, Saman. 2021. "Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading." Physiologia Plantarum. 174 (1), pp. 1-18. https://doi.org/10.1111/ppl.13612Dimorphism in Neopseudocercosporella capsellae, an Emerging Pathogen Causing White Leaf Spot Disease of Brassicas
Gunasinghe, Niroshini, Barbetti, Martin J., You, Ming Pei, Dehigaspitiya, Prabuddha and Neate, Stephen. 2021. "Dimorphism in Neopseudocercosporella capsellae, an Emerging Pathogen Causing White Leaf Spot Disease of Brassicas." Frontiers in Cellular and Infection Microbiology. 11, pp. 1-15. https://doi.org/10.3389/fcimb.2021.678231The use of Pantoea agglomerans and Flavobacterium sp. to control banana pathogens
Gunasinghe, R. Niroshini, Ikiriwatte, Chamari J. and Karunaratne, Anjani M.. 2004. "The use of Pantoea agglomerans and Flavobacterium sp. to control banana pathogens." Journal of Horticultural Science and Biotechnology. 79 (6), pp. 1002-1006. https://doi.org/10.1080/14620316.2004.11511852Interactions of Colletotrichum musae and Lasiodiplodia theobromae and their biocontrol by Pantoea agglomerans and Flavobacterium sp. in expression of crown rot of 'Embul' banana
Gunasinghe, W. K. R. Niroshini and Karunaratne, Anjani M.. 2009. "Interactions of Colletotrichum musae and Lasiodiplodia theobromae and their biocontrol by Pantoea agglomerans and Flavobacterium sp. in expression of crown rot of 'Embul' banana." BioControl: journal of the International Organisation for Biological Control. 54 (4), pp. 587-596. https://doi.org/10.1007/s10526-009-9210-4Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia
Poudel, Barsha, Shivas, Roger G., Adorada, Dante L., Barbetti, Martin J., Bithell, Sean L., Kelly, Lisa A., Moore, Natalie, Sparks, Adam H., Tan, Yu Pei, Thomas, Geoff, van Leur, Joop and Vaghefi, Niloofar. 2021. "Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia." European Journal of Plant Pathology. 161, pp. 1-23. https://doi.org/10.1007/s10658-021-02300-0Outstanding host resistance will resolve the threat from white leaf spot disease (Pseudocercosporella capsellae) to oilseed and vegetable Brassica spp. crops
Gunasinghe, Niroshini, You, Ming Pei, Banga, Surinder S., Banga, Shashi K. and Barbetti, Martin J.. 2017. "Outstanding host resistance will resolve the threat from white leaf spot disease (Pseudocercosporella capsellae) to oilseed and vegetable Brassica spp. crops." Australasian Plant Pathology. 46 (2), pp. 137-146. https://doi.org/10.1007/s13313-017-0470-7Unique infection structures produced by Pseudocercosporella capsellae on oilseed crops Brassica carinata, B. juncea and B. napus in Western Australia
Gunasinghe, N., You, M. P., Clode, P., Cawthray, G. R. and Barbetti, M. J.. 2017. "Unique infection structures produced by Pseudocercosporella capsellae on oilseed crops Brassica carinata, B. juncea and B. napus in Western Australia." Plant Pathology. 66 (2), pp. 304-315. https://doi.org/10.1111/ppa.12563Mechanisms of resistance in Brassica carinata, B. napus and B. juncea to Pseudocercosporella capsellae
Gunasinghe, N., You, M. P., Clode, P. L. and Barbetti, M. J.. 2016. "Mechanisms of resistance in Brassica carinata, B. napus and B. juncea to Pseudocercosporella capsellae." Plant Pathology. 65 (6), pp. 888-900. https://doi.org/10.1111/ppa.12484White Leaf Spot Caused by Neopseudocercosporella capsellae: A Re-emerging Disease of Brassicaceae
Gunasinghe, Niroshini, Barbetti, Martin J., You, Ming Pei, Burrell, Daniel and Neate, Stephen. 2020. "White Leaf Spot Caused by Neopseudocercosporella capsellae: A Re-emerging Disease of Brassicaceae." Frontiers in Cellular and Infection Microbiology. 10, pp. 1-16. https://doi.org/10.3389/fcimb.2020.588090Phylogeny and pathogenicity of Stemphylium species associated with Fabaceae in Australia
Vaghefi, Niloofar, Thompson, Susan M., Kimber, Rohan B.E., Thomas, Geoff J., Kant, Pragya, Barbetti, Martin J. and van Leur, Joop A.G.. 2020. "Phylogeny and pathogenicity of Stemphylium species associated with Fabaceae in Australia." Mycological Progress: international journal of fungal sciences. 19, pp. 381-396. https://doi.org/10.1007/s11557-020-01566-8First report of rice blast (Magnaporthe Oryzae) on rice (Oryza Sativa) in Western Australia
You, M. P., Lanoiselet, V., Wang, C. P., Shivas, R. G., Li, Y. P. and Barbetti, M. J.. 2012. "First report of rice blast (Magnaporthe Oryzae) on rice (Oryza Sativa) in Western Australia." Plant Disease: an international journal of applied plant pathology. 96 (8), pp. 1228-1229. https://doi.org/10.1094/PDIS-05-12-0420-PDNFirst report of Sarocladium Oryzae causing sheath rot on rice (Oryza sativa) in Western Australia
Lanoiselet, V., You, M. P., Li, Y. P., Wang, C. P., Shivas, R. G. and Barbetti, M. J.. 2012. "First report of Sarocladium Oryzae causing sheath rot on rice (Oryza sativa) in Western Australia." Plant Disease: an international journal of applied plant pathology. 96 (9), pp. 1382-1383. https://doi.org/10.1094/PDIS-04-12-0415-PDNNew host resistances to Pseudocercosporella capsellae and implications for white leaf spot management in Brassicaceae crops
Gunasinghe, Niroshini, You, Ming Pei, Li, Xi Xiang, Banga, Surinder S., Banga, Shashi K. and Barbetti, Martin J.. 2016. "New host resistances to Pseudocercosporella capsellae and implications for white leaf spot management in Brassicaceae crops." Crop Protection. 86, pp. 69-76. https://doi.org/10.1016/j.cropro.2016.04.014Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia
Gunasinghe, N., You, M. P. and Barbetti, M. J.. 2016. "Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia." Plant Pathology. 65 (2), pp. 205-217. https://doi.org/10.1111/ppa.12402