Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia

Article


Gunasinghe, N., You, M. P. and Barbetti, M. J.. 2016. "Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia." Plant Pathology. 65 (2), pp. 205-217. https://doi.org/10.1111/ppa.12402
Article Title

Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia

ERA Journal ID2652
Article CategoryArticle
AuthorsGunasinghe, N. (Author), You, M. P. (Author) and Barbetti, M. J. (Author)
Journal TitlePlant Pathology
Journal Citation65 (2), pp. 205-217
Number of Pages13
Year2016
PublisherJohn Wiley & Sons
Place of PublicationUnited Kingdom
ISSN0032-0862
1365-3059
Digital Object Identifier (DOI)https://doi.org/10.1111/ppa.12402
Web Address (URL)http://onlinelibrary.wiley.com/doi/10.1111/ppa.12402/abstract
Abstract

Pseudocercosporella capsellae (white leaf spot disease) is an important disease on crucifers. Fifty four single-conidial isolates collected from Brassica juncea (Indian mustard), B. napus (oilseed rape), B. rapa (turnip), and Raphanus raphanistrum (wild radish) across Western Australia were investigated for differences in pathogenicity and virulence using cotyledon screening tests, genetic differences using Internal Transcribed Spacer (ITS) sequencing and phylogenetic analysis, and growth rates on potato dextrose, V8 juice and malt extract agars. All isolates from the four crucifer hosts were pathogenic on the three test species: B. juncea, B. napus and R. raphanistrum, but showed differences in levels of virulence. Overall, isolates from B. juncea, B. napus and B. rapa showed greatest virulence on B. juncea, least on R. raphanistrum and intermediate virulence on B. napus. Isolates from R. raphanistrum showed greatest virulence on B. juncea, least on B. napus and intermediate virulence on R. raphanistrum. Growth and production of a purple-pink pigment indicative of cercosporin was greatest on malt extract agar and cercosporin production on V8 juice agar was positively correlated with virulence of isolates on B. juncea and B. napus. ITS sequencing and phylogenetic analysis showed that isolates collected from B. napus, B. juncea and B. rapa, in general and with few exceptions, had a high degree of genetic similarity. In contrast, isolates from R. raphanistrum were clearly differentiated from isolate groups collected from Brassica hosts. P. capsellae reference isolates from other countries generally grouped into a single separate cluster, highlighting the genetic distinctiveness of Western Australian isolates.

KeywordsPseudocercosporella capsellae, white leaf spot, genetic variation, phenotypic variation
ANZSRC Field of Research 2020300409. Crop and pasture protection (incl. pests, diseases and weeds)
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsUniversity of Western Australia
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q3x95/phenotypic-and-phylogenetic-studies-associated-with-the-crucifer-white-leaf-spot-pathogen-pseudocercosporella-capsellae-in-western-australia

  • 1349
    total views
  • 12
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

First report of Fusarium madaense as a cause of root and stalk rot on Sorghum bicolor in Australia
Gunasinghe, N., Vaghefi, N., Shivas, R. G., Tan, Y. P., Jordan, D., Mace, E., Cruickshank, A. and Martin, A.. 2023. "First report of Fusarium madaense as a cause of root and stalk rot on Sorghum bicolor in Australia." New Disease Reports. 47 (2). https://doi.org/10.1002/ndr2.12192
IMA Genome - F16 Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta
Wingfield, Brenda D., De Vos, Lieschen, Wilson, Andi M., Duong, Tuan A., Vaghefi, Niloofar, Botes, Angela, Kharwar, Ravindra Nath, Chand, Ramesh, Poudel, Barsha, Aliyu, Habibu, Barbetti, Martin J., Chen, ShuaiFei, de Maayer, Pieter, Liu, FeiFei, Navathe, Sudhir, Sinha, Shagun, Steenkamp, Emma T., Suzuki, Hiroyuki, Tshisekedi, Kalonji A., ..., Wingfield, Michael J.. 2022. "IMA Genome - F16 Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta." IMA Fungus: the global mycological journal. 13 (1), pp. 1-22. https://doi.org/10.1186/s43008-022-00089-z
First Report of Powdery Mildew Caused by Erysiphe cruciferarum on Brassica campestris var. pekinensis, B. carinata, Eruca sativa, E. vesicaria in Australia and on B. rapa and B. oleracea var. capitata in Western Australia
Gunasinghe, Niroshini, You, M. P., Lanoiselet, V., Eyres, N. and Barbetti, M. J.. 2013. "First Report of Powdery Mildew Caused by Erysiphe cruciferarum on Brassica campestris var. pekinensis, B. carinata, Eruca sativa, E. vesicaria in Australia and on B. rapa and B. oleracea var. capitata in Western Australia." Plant Disease: an international journal of applied plant pathology. 97 (9), pp. 1256-1256. https://doi.org/10.1094/PDIS-03-13-0299-PDN
Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading
Kamaral, Chandima, Neate, Stephen M., Gunasinghe, Niroshini, Milham, Paul J., Paterson, David J., Kopittke, Peter M. and Seneweera, Saman. 2021. "Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading." Physiologia Plantarum. 174 (1), pp. 1-18. https://doi.org/10.1111/ppl.13612
Dimorphism in Neopseudocercosporella capsellae, an Emerging Pathogen Causing White Leaf Spot Disease of Brassicas
Gunasinghe, Niroshini, Barbetti, Martin J., You, Ming Pei, Dehigaspitiya, Prabuddha and Neate, Stephen. 2021. "Dimorphism in Neopseudocercosporella capsellae, an Emerging Pathogen Causing White Leaf Spot Disease of Brassicas." Frontiers in Cellular and Infection Microbiology. 11, pp. 1-15. https://doi.org/10.3389/fcimb.2021.678231
The use of Pantoea agglomerans and Flavobacterium sp. to control banana pathogens
Gunasinghe, R. Niroshini, Ikiriwatte, Chamari J. and Karunaratne, Anjani M.. 2004. "The use of Pantoea agglomerans and Flavobacterium sp. to control banana pathogens." Journal of Horticultural Science and Biotechnology. 79 (6), pp. 1002-1006. https://doi.org/10.1080/14620316.2004.11511852
Interactions of Colletotrichum musae and Lasiodiplodia theobromae and their biocontrol by Pantoea agglomerans and Flavobacterium sp. in expression of crown rot of 'Embul' banana
Gunasinghe, W. K. R. Niroshini and Karunaratne, Anjani M.. 2009. "Interactions of Colletotrichum musae and Lasiodiplodia theobromae and their biocontrol by Pantoea agglomerans and Flavobacterium sp. in expression of crown rot of 'Embul' banana." BioControl: journal of the International Organisation for Biological Control. 54 (4), pp. 587-596. https://doi.org/10.1007/s10526-009-9210-4
Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia
Poudel, Barsha, Shivas, Roger G., Adorada, Dante L., Barbetti, Martin J., Bithell, Sean L., Kelly, Lisa A., Moore, Natalie, Sparks, Adam H., Tan, Yu Pei, Thomas, Geoff, van Leur, Joop and Vaghefi, Niloofar. 2021. "Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia." European Journal of Plant Pathology. 161, pp. 1-23. https://doi.org/10.1007/s10658-021-02300-0
Outstanding host resistance will resolve the threat from white leaf spot disease (Pseudocercosporella capsellae) to oilseed and vegetable Brassica spp. crops
Gunasinghe, Niroshini, You, Ming Pei, Banga, Surinder S., Banga, Shashi K. and Barbetti, Martin J.. 2017. "Outstanding host resistance will resolve the threat from white leaf spot disease (Pseudocercosporella capsellae) to oilseed and vegetable Brassica spp. crops." Australasian Plant Pathology. 46 (2), pp. 137-146. https://doi.org/10.1007/s13313-017-0470-7
Unique infection structures produced by Pseudocercosporella capsellae on oilseed crops Brassica carinata, B. juncea and B. napus in Western Australia
Gunasinghe, N., You, M. P., Clode, P., Cawthray, G. R. and Barbetti, M. J.. 2017. "Unique infection structures produced by Pseudocercosporella capsellae on oilseed crops Brassica carinata, B. juncea and B. napus in Western Australia." Plant Pathology. 66 (2), pp. 304-315. https://doi.org/10.1111/ppa.12563
Mechanisms of resistance in Brassica carinata, B. napus and B. juncea to Pseudocercosporella capsellae
Gunasinghe, N., You, M. P., Clode, P. L. and Barbetti, M. J.. 2016. "Mechanisms of resistance in Brassica carinata, B. napus and B. juncea to Pseudocercosporella capsellae." Plant Pathology. 65 (6), pp. 888-900. https://doi.org/10.1111/ppa.12484
White Leaf Spot Caused by Neopseudocercosporella capsellae: A Re-emerging Disease of Brassicaceae
Gunasinghe, Niroshini, Barbetti, Martin J., You, Ming Pei, Burrell, Daniel and Neate, Stephen. 2020. "White Leaf Spot Caused by Neopseudocercosporella capsellae: A Re-emerging Disease of Brassicaceae." Frontiers in Cellular and Infection Microbiology. 10, pp. 1-16. https://doi.org/10.3389/fcimb.2020.588090
Phylogeny and pathogenicity of Stemphylium species associated with Fabaceae in Australia
Vaghefi, Niloofar, Thompson, Susan M., Kimber, Rohan B.E., Thomas, Geoff J., Kant, Pragya, Barbetti, Martin J. and van Leur, Joop A.G.. 2020. "Phylogeny and pathogenicity of Stemphylium species associated with Fabaceae in Australia." Mycological Progress: international journal of fungal sciences. 19, pp. 381-396. https://doi.org/10.1007/s11557-020-01566-8
First report of rice blast (Magnaporthe Oryzae) on rice (Oryza Sativa) in Western Australia
You, M. P., Lanoiselet, V., Wang, C. P., Shivas, R. G., Li, Y. P. and Barbetti, M. J.. 2012. "First report of rice blast (Magnaporthe Oryzae) on rice (Oryza Sativa) in Western Australia." Plant Disease: an international journal of applied plant pathology. 96 (8), pp. 1228-1229. https://doi.org/10.1094/PDIS-05-12-0420-PDN
First report of Sarocladium Oryzae causing sheath rot on rice (Oryza sativa) in Western Australia
Lanoiselet, V., You, M. P., Li, Y. P., Wang, C. P., Shivas, R. G. and Barbetti, M. J.. 2012. "First report of Sarocladium Oryzae causing sheath rot on rice (Oryza sativa) in Western Australia." Plant Disease: an international journal of applied plant pathology. 96 (9), pp. 1382-1383. https://doi.org/10.1094/PDIS-04-12-0415-PDN
New host resistances to Pseudocercosporella capsellae and implications for white leaf spot management in Brassicaceae crops
Gunasinghe, Niroshini, You, Ming Pei, Li, Xi Xiang, Banga, Surinder S., Banga, Shashi K. and Barbetti, Martin J.. 2016. "New host resistances to Pseudocercosporella capsellae and implications for white leaf spot management in Brassicaceae crops." Crop Protection. 86, pp. 69-76. https://doi.org/10.1016/j.cropro.2016.04.014
Cercosporin from Pseudocercosporella capsellae and its critical role in white leaf spot development
Gunasinghe, Niroshini, You, Ming Pei, Cawthray, Gregory R. and Barbetti, Martin J.. 2016. "Cercosporin from Pseudocercosporella capsellae and its critical role in white leaf spot development." Plant Disease: an international journal of applied plant pathology. 100 (8), pp. 1521-1531. https://doi.org/10.1094/PDIS-10-15-1192-RE
High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops
Gunasinghe, Niroshini, You, Ming Pei, Surinder, Banga S. and Barbetti, Martin J.. 2014. "High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops." European Journal of Plant Pathology. 138 (4), pp. 873-890. https://doi.org/10.1007/s10658-013-0360-y