Mechanisms of resistance in Brassica carinata, B. napus and B. juncea to Pseudocercosporella capsellae

Article


Gunasinghe, N., You, M. P., Clode, P. L. and Barbetti, M. J.. 2016. "Mechanisms of resistance in Brassica carinata, B. napus and B. juncea to Pseudocercosporella capsellae." Plant Pathology. 65 (6), pp. 888-900. https://doi.org/10.1111/ppa.12484
Article Title

Mechanisms of resistance in Brassica carinata, B. napus and
B. juncea to Pseudocercosporella capsellae

ERA Journal ID2652
Article CategoryArticle
AuthorsGunasinghe, N. (Author), You, M. P. (Author), Clode, P. L. (Author) and Barbetti, M. J. (Author)
Journal TitlePlant Pathology
Journal Citation65 (6), pp. 888-900
Number of Pages13
Year2016
PublisherJohn Wiley & Sons
Place of PublicationUnited Kingdom
ISSN0032-0862
1365-3059
Digital Object Identifier (DOI)https://doi.org/10.1111/ppa.12484
Web Address (URL)https://bsppjournals.onlinelibrary.wiley.com/doi/full/10.1111/ppa.12484
Abstract

Studies were undertaken to compare susceptible and resistant host responses to Pseudocercosporella capsellae in cotyledons of Brassica carinata, B. juncea and B. napus in order to define the mechanisms of resistance in these three species. On both resistant and susceptible hosts, hyphal penetration was always through stomatal openings and without infection pegs or appressoria. On resistant B. carinata ATC94129P, up to 72% of spores disintegrated and, generally, germination (<22%) and germ tube lengths (<25 μm) were comparatively low. Resistant B. napus Hyola 42 had the lowest germination (8%) and susceptible B. carinata UWA#012 had the highest (51%). On resistant B. carinata ATC94129P, germ tube extension was impeded across 24–60 h post‐inoculation (hpi) and percentage stomatal penetration lower (4%) at 60 hpi compared with susceptible B. carinata UWA#012 (26%). Stomatal densities (stomata/14 757 μm2) on resistant B. juncea Dune (2·12) and B. napus Hyola 42 (1·62) were lower than for susceptible B. juncea Vardan (2·40) and B. napus Trilogy (2·03). Resistant B. carinata ATC94129P had greater stomatal density (1·89) than susceptible B. carinata UWA#012 (1·58). Overall, B. juncea had greater stomatal density (2·26) compared with B. napus (1·83) and B. carinata (1·74). In resistant B. carinata ATC94129P, P. capsellae induced 28% stomata to close, while in susceptible B. carinata UWA#012 no such closure was induced. Epicuticular wax crystalloids were present only on resistant B. carinata ATC94129P and probably also contribute towards resistance.

KeywordsBrassica carinata, Brassica juncea, Brassica napus, Pseudocercosporella capsellae, resistance mechanisms, white leaf spot
ANZSRC Field of Research 2020310705. Mycology
310805. Plant pathology
300409. Crop and pasture protection (incl. pests, diseases and weeds)
Byline AffiliationsUniversity of Western Australia
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q630w/mechanisms-of-resistance-in-brassica-carinata-b-napus-and-b-juncea-to-pseudocercosporella-capsellae

  • 73
    total views
  • 8
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

First report of Fusarium madaense as a cause of root and stalk rot on Sorghum bicolor in Australia
Gunasinghe, N., Vaghefi, N., Shivas, R. G., Tan, Y. P., Jordan, D., Mace, E., Cruickshank, A. and Martin, A.. 2023. "First report of Fusarium madaense as a cause of root and stalk rot on Sorghum bicolor in Australia." New Disease Reports. 47 (2). https://doi.org/10.1002/ndr2.12192
IMA Genome - F16 Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta
Wingfield, Brenda D., De Vos, Lieschen, Wilson, Andi M., Duong, Tuan A., Vaghefi, Niloofar, Botes, Angela, Kharwar, Ravindra Nath, Chand, Ramesh, Poudel, Barsha, Aliyu, Habibu, Barbetti, Martin J., Chen, ShuaiFei, de Maayer, Pieter, Liu, FeiFei, Navathe, Sudhir, Sinha, Shagun, Steenkamp, Emma T., Suzuki, Hiroyuki, Tshisekedi, Kalonji A., ..., Wingfield, Michael J.. 2022. "IMA Genome - F16 Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta." IMA Fungus: the global mycological journal. 13 (1), pp. 1-22. https://doi.org/10.1186/s43008-022-00089-z
First Report of Powdery Mildew Caused by Erysiphe cruciferarum on Brassica campestris var. pekinensis, B. carinata, Eruca sativa, E. vesicaria in Australia and on B. rapa and B. oleracea var. capitata in Western Australia
Gunasinghe, Niroshini, You, M. P., Lanoiselet, V., Eyres, N. and Barbetti, M. J.. 2013. "First Report of Powdery Mildew Caused by Erysiphe cruciferarum on Brassica campestris var. pekinensis, B. carinata, Eruca sativa, E. vesicaria in Australia and on B. rapa and B. oleracea var. capitata in Western Australia." Plant Disease: an international journal of applied plant pathology. 97 (9), pp. 1256-1256. https://doi.org/10.1094/PDIS-03-13-0299-PDN
Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading
Kamaral, Chandima, Neate, Stephen M., Gunasinghe, Niroshini, Milham, Paul J., Paterson, David J., Kopittke, Peter M. and Seneweera, Saman. 2021. "Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading." Physiologia Plantarum. 174 (1), pp. 1-18. https://doi.org/10.1111/ppl.13612
Dimorphism in Neopseudocercosporella capsellae, an Emerging Pathogen Causing White Leaf Spot Disease of Brassicas
Gunasinghe, Niroshini, Barbetti, Martin J., You, Ming Pei, Dehigaspitiya, Prabuddha and Neate, Stephen. 2021. "Dimorphism in Neopseudocercosporella capsellae, an Emerging Pathogen Causing White Leaf Spot Disease of Brassicas." Frontiers in Cellular and Infection Microbiology. 11, pp. 1-15. https://doi.org/10.3389/fcimb.2021.678231
The use of Pantoea agglomerans and Flavobacterium sp. to control banana pathogens
Gunasinghe, R. Niroshini, Ikiriwatte, Chamari J. and Karunaratne, Anjani M.. 2004. "The use of Pantoea agglomerans and Flavobacterium sp. to control banana pathogens." Journal of Horticultural Science and Biotechnology. 79 (6), pp. 1002-1006. https://doi.org/10.1080/14620316.2004.11511852
Interactions of Colletotrichum musae and Lasiodiplodia theobromae and their biocontrol by Pantoea agglomerans and Flavobacterium sp. in expression of crown rot of 'Embul' banana
Gunasinghe, W. K. R. Niroshini and Karunaratne, Anjani M.. 2009. "Interactions of Colletotrichum musae and Lasiodiplodia theobromae and their biocontrol by Pantoea agglomerans and Flavobacterium sp. in expression of crown rot of 'Embul' banana." BioControl: journal of the International Organisation for Biological Control. 54 (4), pp. 587-596. https://doi.org/10.1007/s10526-009-9210-4
Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia
Poudel, Barsha, Shivas, Roger G., Adorada, Dante L., Barbetti, Martin J., Bithell, Sean L., Kelly, Lisa A., Moore, Natalie, Sparks, Adam H., Tan, Yu Pei, Thomas, Geoff, van Leur, Joop and Vaghefi, Niloofar. 2021. "Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia." European Journal of Plant Pathology. 161, pp. 1-23. https://doi.org/10.1007/s10658-021-02300-0
Outstanding host resistance will resolve the threat from white leaf spot disease (Pseudocercosporella capsellae) to oilseed and vegetable Brassica spp. crops
Gunasinghe, Niroshini, You, Ming Pei, Banga, Surinder S., Banga, Shashi K. and Barbetti, Martin J.. 2017. "Outstanding host resistance will resolve the threat from white leaf spot disease (Pseudocercosporella capsellae) to oilseed and vegetable Brassica spp. crops." Australasian Plant Pathology. 46 (2), pp. 137-146. https://doi.org/10.1007/s13313-017-0470-7
Unique infection structures produced by Pseudocercosporella capsellae on oilseed crops Brassica carinata, B. juncea and B. napus in Western Australia
Gunasinghe, N., You, M. P., Clode, P., Cawthray, G. R. and Barbetti, M. J.. 2017. "Unique infection structures produced by Pseudocercosporella capsellae on oilseed crops Brassica carinata, B. juncea and B. napus in Western Australia." Plant Pathology. 66 (2), pp. 304-315. https://doi.org/10.1111/ppa.12563
White Leaf Spot Caused by Neopseudocercosporella capsellae: A Re-emerging Disease of Brassicaceae
Gunasinghe, Niroshini, Barbetti, Martin J., You, Ming Pei, Burrell, Daniel and Neate, Stephen. 2020. "White Leaf Spot Caused by Neopseudocercosporella capsellae: A Re-emerging Disease of Brassicaceae." Frontiers in Cellular and Infection Microbiology. 10, pp. 1-16. https://doi.org/10.3389/fcimb.2020.588090
Phylogeny and pathogenicity of Stemphylium species associated with Fabaceae in Australia
Vaghefi, Niloofar, Thompson, Susan M., Kimber, Rohan B.E., Thomas, Geoff J., Kant, Pragya, Barbetti, Martin J. and van Leur, Joop A.G.. 2020. "Phylogeny and pathogenicity of Stemphylium species associated with Fabaceae in Australia." Mycological Progress: international journal of fungal sciences. 19, pp. 381-396. https://doi.org/10.1007/s11557-020-01566-8
First report of rice blast (Magnaporthe Oryzae) on rice (Oryza Sativa) in Western Australia
You, M. P., Lanoiselet, V., Wang, C. P., Shivas, R. G., Li, Y. P. and Barbetti, M. J.. 2012. "First report of rice blast (Magnaporthe Oryzae) on rice (Oryza Sativa) in Western Australia." Plant Disease: an international journal of applied plant pathology. 96 (8), pp. 1228-1229. https://doi.org/10.1094/PDIS-05-12-0420-PDN
First report of Sarocladium Oryzae causing sheath rot on rice (Oryza sativa) in Western Australia
Lanoiselet, V., You, M. P., Li, Y. P., Wang, C. P., Shivas, R. G. and Barbetti, M. J.. 2012. "First report of Sarocladium Oryzae causing sheath rot on rice (Oryza sativa) in Western Australia." Plant Disease: an international journal of applied plant pathology. 96 (9), pp. 1382-1383. https://doi.org/10.1094/PDIS-04-12-0415-PDN
New host resistances to Pseudocercosporella capsellae and implications for white leaf spot management in Brassicaceae crops
Gunasinghe, Niroshini, You, Ming Pei, Li, Xi Xiang, Banga, Surinder S., Banga, Shashi K. and Barbetti, Martin J.. 2016. "New host resistances to Pseudocercosporella capsellae and implications for white leaf spot management in Brassicaceae crops." Crop Protection. 86, pp. 69-76. https://doi.org/10.1016/j.cropro.2016.04.014
Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia
Gunasinghe, N., You, M. P. and Barbetti, M. J.. 2016. "Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia." Plant Pathology. 65 (2), pp. 205-217. https://doi.org/10.1111/ppa.12402
Cercosporin from Pseudocercosporella capsellae and its critical role in white leaf spot development
Gunasinghe, Niroshini, You, Ming Pei, Cawthray, Gregory R. and Barbetti, Martin J.. 2016. "Cercosporin from Pseudocercosporella capsellae and its critical role in white leaf spot development." Plant Disease: an international journal of applied plant pathology. 100 (8), pp. 1521-1531. https://doi.org/10.1094/PDIS-10-15-1192-RE
High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops
Gunasinghe, Niroshini, You, Ming Pei, Surinder, Banga S. and Barbetti, Martin J.. 2014. "High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops." European Journal of Plant Pathology. 138 (4), pp. 873-890. https://doi.org/10.1007/s10658-013-0360-y