Design of Hierarchically Tailored Hybrids Based on Nickle Nanocrystal-Decorated Manganese Dioxides for Enhanced Fire Safety of Epoxy Resin

Article


Yuan, Yao, Liang, Chen, Yuen, Anthony Chun Yin, Xu, Lulu, Yu, Bin, Cao, Chengfei and Wang, Wei. 2022. "Design of Hierarchically Tailored Hybrids Based on Nickle Nanocrystal-Decorated Manganese Dioxides for Enhanced Fire Safety of Epoxy Resin." International Journal of Molecular Sciences. 23 (22). https://doi.org/10.3390/ijms232213711
Article Title

Design of Hierarchically Tailored Hybrids Based on Nickle Nanocrystal-Decorated Manganese Dioxides for Enhanced Fire Safety of Epoxy Resin

ERA Journal ID41930
Article CategoryArticle
AuthorsYuan, Yao, Liang, Chen, Yuen, Anthony Chun Yin, Xu, Lulu, Yu, Bin, Cao, Chengfei and Wang, Wei
Journal TitleInternational Journal of Molecular Sciences
Journal Citation23 (22)
Article Number13711
Number of Pages14
Year2022
PublisherMDPI AG
Place of PublicationSwitzerland
ISSN1422-0067
Digital Object Identifier (DOI)https://doi.org/10.3390/ijms232213711
Web Address (URL)https://www.mdpi.com/1422-0067/23/22/13711
Abstract

A novel and hierarchical hybrid composite (MnO2@CHS@SA@Ni) was synthesized utilizing manganese dioxide (MnO2) nanosheets as the core structure, self-assembly chitosan (CHS), sodium alginate (SA) and nickel species (Ni) as surface layers, and it was further incorporated into an epoxy matrix for achieving fire hazard suppression via surface self-assembly technology. Herein, the resultant hybrid epoxy composite possessed an exceptional nano-barrier and synergistic charring effect to aid the formation of a compact layered structure that enhanced its fire-resistive effectiveness. As a result, the addition of only 2 wt% MnO2@CHS@SA@Ni hybrids led to a dramatic reduction in the peak heat release rate and total heat release values (by ca. 33% and 27.8%) of the epoxy matrix. Notably, the peak smoke production rate and total smoke production values of EP/MnO2@CHS@SA@Ni 2% were decreased by ca. 16.9 and 38.4% compared to the corresponding data of pristine EP. This was accompanied by the suppression of toxic CO, NO release and the diffusion of thermal pyrolysis gases during combustion through TG-IR results. Overall, a significant fire-testing outcome of the proposed hierarchical structure was proven to be effective for epoxy composites in terms of flammability, smoke and toxicity reductions, optimizing their prospects in other polymeric materials in the respective fields.

Keywordspolymer-matrix composites; smoke toxicity; flame retardancy; surface treatments
Byline AffiliationsXiamen University of Technology, China
University of New South Wales
Nanyang Technological University, Singapore
University of Science and Technology of China, China
Centre for Future Materials
Permalink -

https://research.usq.edu.au/item/z02z7/design-of-hierarchically-tailored-hybrids-based-on-nickle-nanocrystal-decorated-manganese-dioxides-for-enhanced-fire-safety-of-epoxy-resin

Download files


Published Version
ijms-23-13711-v2.pdf
License: CC BY 4.0
File access level: Anyone

  • 16
    total views
  • 18
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Biomimetic, Mechanically Strong Supramolecular Nanosystem Enabling Solvent Resistance, Reliable Fire Protection and Ultralong Fire Warning
Cao, Cheng-Fei, Yu, Bin, Huang, Ju, Feng, Xiao-Lan, Lv, Ling-Yu, Sun, Feng-Na, Tang, Long-Cheng, Feng, Jiabing, Song, Pingan and Wang, Hao. 2022. "Biomimetic, Mechanically Strong Supramolecular Nanosystem Enabling Solvent Resistance, Reliable Fire Protection and Ultralong Fire Warning." ACS Nano. 16 (12), pp. 20865-20876. https://doi.org/10.1021/acsnano.2c08368
Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties
Chen, Kexin, Feng, Yuezhan, Shi, Yongqian, Wang, Hengrui, Fu, Libi, Liu, Miao, Lv, Yuancai, Yang, Fuqiang, Yu, Bin, Liu, Minghua and Song, Pingan. 2022. "Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties." Composites Part A: Applied Science and Manufacturing. 160. https://doi.org/10.1016/j.compositesa.2022.107070
Smart fire-warning materials and sensors: Design principle, performances, and applications
Lv, Ling-Yu Lv, Cao, Cheng-Fei, Qu, Yong-Xiang, Zhang, Guo-Dong, Zhao, Li, Cao, Kun, Song, Pingan and Tang, Long-Cheng. 2022. "Smart fire-warning materials and sensors: Design principle, performances, and applications ." Reports of Materials Science and Engineering: R: Reports. 150. https://doi.org/10.1016/j.mser.2022.100690
Progress in flame-retardant sustainable fiber/polymer composites
Yu, Bin, Cao, Cheng-Fei and Yuen, Richard K.K.. 2022. "Progress in flame-retardant sustainable fiber/polymer composites." Hu, Yuan, Nabipour, Hafezeh and Wang, Xin (ed.) Bio-Based Flame-retardant Technology for Polymeric Materials. Elsevier. pp. 419-449
Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites
Wu, Wei, Zhao, Wanjing, Gong, Xianjing, Sun, Qijun, Cao, Xianwu, Su, Yujun, Yu, Bin, Li, Robert K.Y. and Vellaisamy, Roy A.L.. 2022. "Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites." Journal of Materials Science and Technology. 101, pp. 107-117. https://doi.org/10.1016/j.jmst.2021.05.060
Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning
Cao, Cheng-fei, Yu, Bin, Chen, Zuan-Yu, Qu, Yong-Xiang, Li, Yu-Tong, Shi, Yongqian, Ma, Zhewen, Sun, Feng-Na, Pan, Qing‑Hua, Tang, Long-Cheng, Song, Pingan and Wang, Hao. 2022. "Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning." Nano-Micro Letters. 14 (1). https://doi.org/10.1007/s40820-022-00837-1
Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability
Yu, Bin, Yuen, Anthony Chun Yin, Xu, Xiaodong, Zhang, Zhen-Cheng, Yang, Wei, Lu, Hongdian, Fei, Bin, Yeoh, Guan Heng, Song, Pingan and Wang, Hao. 2021. "Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability." Journal of Hazardous Materials. 401, pp. 1-13. https://doi.org/10.1016/j.jhazmat.2020.123342