Bio-based and fireproof radiative cooling aerogel film: Achieving higher sustainability and safety
Article
Cai, Wei, Lin, Bicheng, Qi, Liangyuan, Cui, Tianyang, Li, Zhaoxin, Wang, Junling, Li, Sicheng, Cao, Chengfei, Rahman, Mohammad Ziaur, Hu, Xin, Yu, Rujun, Shi, Shuo, Xing, Weiyi, Hu, Yuan, Zhu, Jixin and Fei, Bin. 2024. "Bio-based and fireproof radiative cooling aerogel film: Achieving higher sustainability and safety." Chemical Engineering Journal. 488. https://doi.org/10.1016/j.cej.2024.150784
Article Title | Bio-based and fireproof radiative cooling aerogel film: Achieving higher sustainability and safety |
---|---|
ERA Journal ID | 3854 |
Article Category | Article |
Authors | Cai, Wei, Lin, Bicheng, Qi, Liangyuan, Cui, Tianyang, Li, Zhaoxin, Wang, Junling, Li, Sicheng, Cao, Chengfei, Rahman, Mohammad Ziaur, Hu, Xin, Yu, Rujun, Shi, Shuo, Xing, Weiyi, Hu, Yuan, Zhu, Jixin and Fei, Bin |
Journal Title | Chemical Engineering Journal |
Journal Citation | 488 |
Article Number | 150784 |
Number of Pages | 12 |
Year | 2024 |
Publisher | Elsevier |
Place of Publication | Netherlands |
ISSN | 1385-8947 |
1873-3212 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.cej.2024.150784 |
Web Address (URL) | https://www.sciencedirect.com/science/article/abs/pii/S138589472402271X |
Abstract | Even though significant advantages in the energy-free regulation of temperature are presented, the practical applications of radiative cooling materials in buildings and human surfaces still involve many safety issues, especially for fire hazards of polymer-based materials. Meanwhile, renewable and environmentally friendly materials are urgently needed to develop suitable radiative cooling materials with no adverse environmental impact. Herein, a chitosan-derived composite aerogel film with high solar reflection provided by the addition of melamine-phytic acid (MA/PA) hybrids is designed and prepared, presenting radiative cooling and fireproof performances. The instinct deep-yellow color of chitosan (CS) is successfully shielded by high-reflective MA/PA hybrids, while IR emissivity of up to 90.4 % and solar reflectivity of ∼ 89.3 % are achieved. In outdoor environments, this composite aerogel shows sub-ambient temperature drops of ∼ 4.3 °C and ∼ 3.1 °C in cloudless and cloudy weather, presenting a robust cooling effect. In addition, CS-MA/PA composite aerogel film with 3 mm thickness can isolate the fire of ∼ 500 °C, showing superior fire safety attributed to the synergistic flame retardant effects among chitosan, phytic acid, and melamine, which suppress the initial growth of fire and promote the rapid formation of protective char layer. This work provides a bio-based, fire-safe, and radiative cooling material to decrease the energy consumption of temperature regulation with a more environmentally friendly and safer approach, further promoting the practical application of radiative cooling materials. |
Keywords | Bio-Based Materials; Fire Safety; Flame Retardant Mechanism; Radiative Cooling |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 401602. Composite and hybrid materials |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Hong Kong Polytechnic University, China |
University of Science and Technology of China, Hefei, China | |
Nanjing Tech University, China | |
Qingdao University, China | |
Centre for Future Materials |
Permalink -
https://research.usq.edu.au/item/z8480/bio-based-and-fireproof-radiative-cooling-aerogel-film-achieving-higher-sustainability-and-safety
35
total views0
total downloads0
views this month0
downloads this month