Global transcriptome changes during growth of a novel Penicillium coffeae isolate on the wheat stripe rust fungus, Puccinia striiformis f. sp. tritici

Article


Wess, Jack, Hu, Yiheng, Periyannan, Sambasivam, Jones, Ashley and Rathjen, John P.. 2025. "Global transcriptome changes during growth of a novel Penicillium coffeae isolate on the wheat stripe rust fungus, Puccinia striiformis f. sp. tritici." Fungal Genetics and Biology. 176. https://doi.org/10.1016/j.fgb.2024.103956
Article Title

Global transcriptome changes during growth of a novel Penicillium coffeae isolate on the wheat stripe rust fungus, Puccinia striiformis f. sp. tritici

ERA Journal ID2592
Article CategoryArticle
AuthorsWess, Jack, Hu, Yiheng, Periyannan, Sambasivam, Jones, Ashley and Rathjen, John P.
Journal TitleFungal Genetics and Biology
Journal Citation176
Article Number103956
Number of Pages15
Year2025
PublisherElsevier
Place of PublicationUnited States
ISSN0147-5975
1087-1845
1096-0937
Digital Object Identifier (DOI)https://doi.org/10.1016/j.fgb.2024.103956
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S1087184524000938
AbstractWheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is currently the most destructive disease of wheat. The major control methods which include the deployment of resistant wheat cultivars and application of chemical fungicides are losing efficiency as the fungus evolves. Natural antagonists of Pst may be an avenue for alternative and environmentally sustainable control of the disease in the field. Here we describe a novel fungus found growing on Pst pustules. We identified the fungus as a novel isolate of the plant endophyte Penicillium coffeae. We present a high-quality reference genome and a comparative transcriptomic analysis used to investigate how the fungus deploys its genes during growth amongst Pst spores. The gene content of the P. coffeae ANU01 genome is suggestive of a generalist that makes use of diverse substrates. An abundance of genes related to lipid, amino acid and carbohydrate metabolism indicate that P. coffeae ANU01 has evolved the ability to exploit nutrient stores in Pst urediniospores. P. coffeae ANU01 deploys a number of biosynthetic gene clusters during growth on Pst spores, potentially to inhibit urediniospores germination and halt defence responses. A number of genes encoding carbohydrate active enzymes are also highly upregulated, suggesting targeting and degradation of Pst urediniospores structures. Alongside carbohydrates, P. coffeae ANU01 appears to target spore lipids as a nutrient source, secreting several highly upregulated lipases. Our findings broaden the understanding of growth associated with rust spores as an evolutionary strategy and provide insight into the genes potentially required for this process.
KeywordsHyperparasitism; Penicillium; Genome; Transcriptome; Metabolism; Stripe rust
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020300103. Agricultural molecular engineering of nucleic acids and proteins
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsAustralian National University
University of Tubingen, Germany
School of Agriculture and Environmental Science
Permalink -

https://research.usq.edu.au/item/zx216/global-transcriptome-changes-during-growth-of-a-novel-penicillium-coffeae-isolate-on-the-wheat-stripe-rust-fungus-puccinia-striiformis-f-sp-tritici

  • 3
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Characterization and Pathogenicity of Soilborne Pathogens in Gloriosa superba: Effects of Single- and Multiple-Pathogen Coinfection on Disease Responses
Dhanabalan, Shanmuga Priya, Johnson, Iruthayasamy, Kumaresan, Parthiban V., Kandasamy, Rajamani, Natesan, Senthil, Periyannan, Sambasivam and Muthusamy, Karthikeyan. 2024. "Characterization and Pathogenicity of Soilborne Pathogens in Gloriosa superba: Effects of Single- and Multiple-Pathogen Coinfection on Disease Responses." Plant Disease: an international journal of applied plant pathology. 108 (11), pp. 3279-3287. https://doi.org/10.1094/PDIS-03-24-0496-RE
Stacking beneficial haplotypes from the Vavilov wheat collection to accelerate breeding for multiple disease resistance
Tong, Jingyang, Tarekegn, Zerihun T., Jambuthenne, Dilani, Alahmad, Samir, Periyannan, Sambasivam, Hickey, Lee, Dinglasan, Eric and Hayes, Ben. 2024. "Stacking beneficial haplotypes from the Vavilov wheat collection to accelerate breeding for multiple disease resistance." Theoretical and Applied Genetics: international journal of plant breeding research. 137 (12). https://doi.org/10.1007/s00122-024-04784-w
Genome-wide atlas of rust resistance loci in wheat
Tong, Jingyang, Zhao, Cong, Liu, Dan, Jambuthenne, Dilani T., Sun, Mengjing, Dinglasan, Eric, Periyannan, Sambasivam K., Hickey, Lee T. and Hayes, Ben J.. 2024. "Genome-wide atlas of rust resistance loci in wheat." Theoretical and Applied Genetics: international journal of plant breeding research. 137 (8). https://doi.org/10.1007/s00122-024-04689-8
Origin and evolution of the bread wheat D genome
Cavalet-Giorsa, Emile, González-Muñoz, Andrea, Athiyannan, Naveenkumar, Holden, Samuel, Salhi, Adil, Gardener, Catherine, Quiroz-Chávez, Jesús, Rustamova, Samira M., Elkot, Ahmed Fawzy, Patpour, Mehran, Rasheed, Awais, Mao, Long, Lagudah, Evans S., Periyannan, Sambasivam K., Sharon, Amir, Himmelbach, Axel, Reif, Jochen C., Knauft, Manuela, Mascher, Martin, ..., Krattinger, Simon G.. 2024. "Origin and evolution of the bread wheat D genome." Nature. 633, pp. 848-855. https://doi.org/10.1038/s41586-024-07808-z
Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance
Subramaniam, Subramaniam, Kadirvel, Palchamy and Periyannan, Sambasivam. 2024. "Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance." Theoretical and Applied Genetics: international journal of plant breeding research. 137 (10). https://doi.org/10.1007/s00122-024-04730-w
Unveiling Genetic Resistance to Crown Rot in Watkins Wheat Landrace Diversity Panel
Garg, Bharat, Rubayet, Md. Tanbir, Muthusamy, Karthikeyan, Subramaniam, Geethanjali, McDonald, Stephen, Balotf, Sadegh, Gardiner, Donald, Percy, Cassy and Periyannan, Sambasivam. 2024. "Unveiling Genetic Resistance to Crown Rot in Watkins Wheat Landrace Diversity Panel." 12th Australasian Soilborne Diseases Symposium (ASDS 2024). Kingscliff, Australia 26 - 30 Aug 2024 Australia.
Unleashing Bacillus species as versatile antagonists: Harnessing the biocontrol potentials of the plant growth-promoting rhizobacteria to combat Macrophomina phaseolina infection in Gloriosa superba
Dhanabalan, Shanmugapriya, Muthusamy, Karthikeyan, Iruthayasamy, Johnson, Kumaresan, Parthiban V., Ravikumar, Caroline, Kandasamy, Rajamani, Natesan, Senthil and Periyannan, Sambasivam. 2024. "Unleashing Bacillus species as versatile antagonists: Harnessing the biocontrol potentials of the plant growth-promoting rhizobacteria to combat Macrophomina phaseolina infection in Gloriosa superba." Microbiological Research. 283. https://doi.org/10.1016/j.micres.2024.127678
Comprehensive analysis of little leaf disease incidence and resistance in eggplant
Muthusamy, Muthusamy, Yogiraj, Gawande Priya, Elaiyabharath, Thiyagarajan, Jesu, Bonipas Antony John, Johnson, Iruthayasamy, Jaffer, Shajith Basha, Dhanabalan, Shanmuga Priya, Boopathi, Narayanan Manikanda, Marimuthu, Subbaiyan, Shobeiri Nejad, Hamid, Adorada, Dante L. and Periyannan, Sambasivam. 2024. "Comprehensive analysis of little leaf disease incidence and resistance in eggplant." BMC Plant Biology. 24, p. 576. https://doi.org/10.1186/s12870-024-05257-4
Sr65: a widely effective gene for stem rust resistance in wheat
Norman, Michael, Chen, Chunhong, Miah, Hanif, Patpour, Mehran, Sørensen, Chris, Hovmøller, Mogens, Forrest, Kerrie, Kumar, Subodh, Prasad, Pramod, Gangwar, Om Prakash, Bhardwaj, Subhash, Bariana, Harbans, Periyannan, Sambasivam and Bansal, Urmil. 2024. "Sr65: a widely effective gene for stem rust resistance in wheat." Theoretical and Applied Genetics: international journal of plant breeding research. 137 (1). https://doi.org/10.1007/s00122-023-04507-7
Editorial: Plant genetic and genomic resources for sustained crop improvement
Rangan, Parimalan, Henry, Robert, Wambugu, Peterson and Periyannan, Sambasivam. 2023. "Editorial: Plant genetic and genomic resources for sustained crop improvement." Frontiers in Plant Science. 14. https://doi.org/10.3389/fpls.2023.1266698
The Keys to Controlling Wheat Rusts: Identification and Deployment of Genetic Resistance
Norman, Michael, Bariana, Harbans, Bansal, Urmil and Periyannan, Sambasivam. 2023. "The Keys to Controlling Wheat Rusts: Identification and Deployment of Genetic Resistance." Phytopathology: International Journal of the American Phytopathological Society. 113 (4), pp. 667-677. https://doi.org/10.1094/PHYTO-02-23-0041-IA
Editorial: Advances in crop resistance breeding using modern genomic tools
Huang, Lin, Li, Yinghui, Chen, Shisheng, Periyannan, Sambasivam and Fahima, Tzion. 2023. "Editorial: Advances in crop resistance breeding using modern genomic tools." Frontiers in Plant Science. 14. https://doi.org/10.3389/fpls.2023.1143689
A pathogen-induced putative NAC transcription factor mediates leaf rust resistance in barley
Chen, Chunhong, Jost, Matthias, Outram, Megan A., Friendship, Dorian, Chen, Jian, Wang, Aihua, Periyannan, Sambasivam, Bartos, Jan, Holusova, Katerina, Dolezel, Jaroslav, Zhang, Peng, Bhatt, Dhara, Singh, Davinder, Lagudah, Evans, Park, Robert F. and Dracatos, Peter M.. 2023. "A pathogen-induced putative NAC transcription factor mediates leaf rust resistance in barley." Nature Communications. 14 (1). https://doi.org/10.1038/s41467-023-41021-2
The First Annotated Genome Assembly of Macrophomina tecta Associated with Charcoal Rot of Sorghum
Poudel, Barsha, Purushotham, Neeraj, Jones, Ashley, Nasim, Jamila, Adorada, Dante L., Sparks, Adam H., Schwessinger, Benjamin and Vaghefi, Niloofar. 2022. "The First Annotated Genome Assembly of Macrophomina tecta Associated with Charcoal Rot of Sorghum." Genome Biology and Evolution. 14 (6), pp. 1-7. https://doi.org/10.1093/gbe/evac081
Draft genome resource for Macrophomina phaseolina associated with charcoal rot in sorghum
Purushotham, Neeraj, Jones, Ashley, Poudel, Barsha, Nasim, Jamila, Adorada, Dante, Sparks, Adam, Schwessinger, Benjamin and Vaghefi, Niloofar. 2020. "Draft genome resource for Macrophomina phaseolina associated with charcoal rot in sorghum." Molecular Plant-Microbe Interactions. 33 (5), pp. 724-726. https://doi.org/10.1094/MPMI-12-19-0356-A