401401. Additive manufacturing


Title401401. Additive manufacturing
Parent4014. Manufacturing engineering

Latest research outputs

Sort by Date Title
Impact response of textile-reinforced 3D printed concrete panels
Ramesh, Akilesh, Rajeev, Pathmanathan, Xu, Shanqing, Sanjayan, Jay and Lu, Guoxing. 2024. "Impact response of textile-reinforced 3D printed concrete panels." Engineering Structures. 315. https://doi.org/10.1016/j.engstruct.2024.118489

Article

In-process textile reinforcement method for 3D concrete printing and its structural performance
Ramesh, Akilesh, Rajeev, Pathmanathan, Sanjayan, Jay and Mechtcherine, Viktor. 2024. "In-process textile reinforcement method for 3D concrete printing and its structural performance." Engineering Structures. 314. https://doi.org/10.1016/j.engstruct.2024.118337

Article

Bond-slip behaviour of textile-reinforcement in 3D printed concrete
Ramesh, Akilesh, Rajeev, Pathmanathan and Sanjayan, Jay. 2024. "Bond-slip behaviour of textile-reinforcement in 3D printed concrete." Journal of Building Engineering. 86. https://doi.org/10.1016/j.jobe.2024.108873

Article

Thermal performance and life cycle analysis of 3D printed concrete wall building
Ramesh, Akilesh, Navaratnam, Satheeskumar, Rajeev, Pathmanathan and Sanjayan, Jay. 2024. "Thermal performance and life cycle analysis of 3D printed concrete wall building." Energy and Buildings. 320. https://doi.org/10.1016/j.enbuild.2024.114604

Article

Fire resistance of 3D printed ultra-high performance concrete panels
Arunothayan, Arun R., Ramesh, Akilesh and Sanjayan, Jay G.. 2024. "Fire resistance of 3D printed ultra-high performance concrete panels." Journal of Building Engineering. 98. https://doi.org/10.1016/j.jobe.2024.111100

Article

Nano-roughness Modification of 3D printed Poly (lactic Acid) Polymer via Alkaline Wet Etching Towards Biomedical Applications
Kumara, S. P. S. N Buddhika Sampath, Senevirathne, S. W. M. A. Ishantha, Mathew, Asha, Ebenezer, Preetha, Yarlagadda, Tejasri, Bray, Laura, Mirkhalaf, Mohammad and Yarlagadda, Prasad K. D. V.. 2024. "Nano-roughness Modification of 3D printed Poly (lactic Acid) Polymer via Alkaline Wet Etching Towards Biomedical Applications." Journal of Applied Science and Engineering. 28 (6), pp. 1331-1340. https://doi.org/10.6180/jase.202506_28(6).0015

Article

3D printing of biodegradable polymers and their composites – Current state-of-the-art, properties, applications, and machine learning for potential future applications
Dananjaya, S.A.V., Chevali, V.S., Dear, J.P., Potluri, P. and Abeykoon, C.. 2024. "3D printing of biodegradable polymers and their composites – Current state-of-the-art, properties, applications, and machine learning for potential future applications ." Progress in Materials Science. 146. https://doi.org/10.1016/j.pmatsci.2024.101336

Article

Using Fibre recovered from face mask waste to improve printability in 3D concrete printing
Rajeev, Pathmanathan, Ramesh, Akilesh, Navaratnam, Satheeskumar and Sanjayan, Jay. 2023. "Using Fibre recovered from face mask waste to improve printability in 3D concrete printing." Cement and Concrete Composites. 139. https://doi.org/10.1016/j.cemconcomp.2023.105047

Article

Rheological characterization of ultra-high performance concrete for 3D printing
Arunothayan, Arun R, Nematollahi, Behzad, Khayat, Kamal H., Ramesh, Akilesh and Sanjayan, Jay G.. 2023. "Rheological characterization of ultra-high performance concrete for 3D printing." Cement and Concrete Composites. 136. https://doi.org/10.1016/j.cemconcomp.2022.104854

Article

3D concrete printing of eco-friendly geopolymer containing brick waste
Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "3D concrete printing of eco-friendly geopolymer containing brick waste." Cement and Concrete Composites. 138. https://doi.org/10.1016/j.cemconcomp.2023.104943

Article

Rapid early age strength development of in-line activated geopolymer for concrete 3D printing
Muthukrishnan, Shravan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "Rapid early age strength development of in-line activated geopolymer for concrete 3D printing." Construction and Building Materials. 406. https://doi.org/10.1016/j.conbuildmat.2023.133312

Article

Nanospikes on Customized 3D-Printed Titanium Implant Surface Inhibits Bacterial Colonization
Mathew, Asha, Hasan, Jafar, Singamneni, Sarat and Yarlagadda, Prasad K. D. V.. 2023. "Nanospikes on Customized 3D-Printed Titanium Implant Surface Inhibits Bacterial Colonization." Advanced Engineering Materials. 25 (8). https://doi.org/10.1002/adem.202201306

Article

Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques." Manufacturing Letters. 30, pp. 39-43. https://doi.org/10.1016/j.mfglet.2021.10.007

Article

High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays." Microsystems and Nanoengineering. 7 (1), pp. 1-17. https://doi.org/10.1038/s41378-021-00298-3

Article

In-line activation of cementitious materials for 3D concrete printing
Ramakrishnan, Sayanthan, Kanagasuntharam, Sasitharan and Sanjayan, Jay. 2022. "In-line activation of cementitious materials for 3D concrete printing." Cement and Concrete Composites. 131. https://doi.org/10.1016/j.cemconcomp.2022.104598

Article

Enhancing the properties of foam concrete 3D printing using porous aggregates
Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2022. "Enhancing the properties of foam concrete 3D printing using porous aggregates." Cement and Concrete Composites. 133. https://doi.org/10.1016/j.cemconcomp.2022.104687

Article

In-line activation of geopolymer slurry for concrete 3D printing
Muthukrishnan, Shravan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2022. "In-line activation of geopolymer slurry for concrete 3D printing." Cement and Concrete Research. 162. https://doi.org/10.1016/j.cemconres.2022.107008

Article