In-line activation of cementitious materials for 3D concrete printing

Article


Ramakrishnan, Sayanthan, Kanagasuntharam, Sasitharan and Sanjayan, Jay. 2022. "In-line activation of cementitious materials for 3D concrete printing." Cement and Concrete Composites. 131. https://doi.org/10.1016/j.cemconcomp.2022.104598
Article Title

In-line activation of cementitious materials for 3D concrete printing

ERA Journal ID21082
Article CategoryArticle
AuthorsRamakrishnan, Sayanthan, Kanagasuntharam, Sasitharan and Sanjayan, Jay
Journal TitleCement and Concrete Composites
Journal Citation131
Article Number104598
Number of Pages14
Year2022
PublisherElsevier
Place of PublicationUnited Kingdom
ISSN0958-9465
1873-393X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cemconcomp.2022.104598
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0958946522001925
Abstract

In-line activation of cementitious materials by introducing the accelerators at the print head is a promising solution to attain the conflicting rheological requirements in 3D concrete printing. However, this technique is associated with many challenges including, difficulty in achieving good mixing homogeneity, formation of dead zones etc. This study investigates a method to attain in-line activation of cementitious materials by encapsulating the accelerator and introducing in the initial mixing. This is followed by thermal intervention at the print head to melt/dissolve the encapsulation for mixing the accelerator with cementitious materials. A gelatine based capsule was used as the shell material for the encapsulation. The encapsulated accelerator was used at varying dosages, and the fresh and hardened properties were assessed. The results showed that the in-line activation of the encapsulated accelerator at 2.5% rapidly transformed from a highly pumpable state to stiffened state with high yield strength and elastic modulus development. For instance, the yield strength of concrete after activation was increased fivefold, compared to control printable mix (CPM). Meanwhile, before activation, the fresh 3D printable mix with encapsulated accelerator showed excellent flowability for long durations. The mechanical properties of 3D printed concrete containing encapsulated accelerator, including the compressive strength and interlayer bond strength, were also improved. Besides, the ultrasonic pulse velocity test revealed that the pore homogeneity reduces with the increasing capsule dosage due to the floating tendency of capsules. The development of micro-capsules would assist in improving the homogeneity.

Keywords3D concrete printing ; In-line mixing ; Set-on-demand ; Encapsulation; Accelerator
ANZSRC Field of Research 2020400505. Construction materials
401401. Additive manufacturing
401602. Composite and hybrid materials
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsSwinburne University of Technology
Permalink -

https://research.usq.edu.au/item/z1q30/in-line-activation-of-cementitious-materials-for-3d-concrete-printing

  • 21
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Investigating PCM encapsulated NaOH additive for set-on-demand in 3D concrete printing
Kanagasuntharam, Sasitharan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2024. "Investigating PCM encapsulated NaOH additive for set-on-demand in 3D concrete printing." Cement and Concrete Composites. 145. https://doi.org/10.1016/j.cemconcomp.2023.105313
The ambient and elevated temperature performance of hemp fibre reinforced alkali-activated cement foam: Effects of fibre dosage and alkali treatment
Dhasindrakrishna, K, Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "The ambient and elevated temperature performance of hemp fibre reinforced alkali-activated cement foam: Effects of fibre dosage and alkali treatment." Journal of Building Engineering. 76. https://doi.org/10.1016/j.jobe.2023.107131
3D concrete printing of eco-friendly geopolymer containing brick waste
Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "3D concrete printing of eco-friendly geopolymer containing brick waste." Cement and Concrete Composites. 138. https://doi.org/10.1016/j.cemconcomp.2023.104943
Rapid early age strength development of in-line activated geopolymer for concrete 3D printing
Muthukrishnan, Shravan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "Rapid early age strength development of in-line activated geopolymer for concrete 3D printing." Construction and Building Materials. 406. https://doi.org/10.1016/j.conbuildmat.2023.133312
Effect of Magnetorheological additives on the buildability of 3D concrete printing
Kanagasuntharam, Sasitharan, Ramakrishnan, Sayanthan, Muthukrishnan, Shravan and Sanjayan, Jay. 2023. "Effect of Magnetorheological additives on the buildability of 3D concrete printing." Journal of Building Engineering. 74. https://doi.org/10.1016/j.jobe.2023.106814
Enhancing the properties of foam concrete 3D printing using porous aggregates
Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2022. "Enhancing the properties of foam concrete 3D printing using porous aggregates." Cement and Concrete Composites. 133. https://doi.org/10.1016/j.cemconcomp.2022.104687
In-line activation of geopolymer slurry for concrete 3D printing
Muthukrishnan, Shravan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2022. "In-line activation of geopolymer slurry for concrete 3D printing." Cement and Concrete Research. 162. https://doi.org/10.1016/j.cemconres.2022.107008
Use of geopolymer concrete in column applications
Lokuge, Weena, Sanjayan, Jay and Setunge, Sujeeva. 2015. "Use of geopolymer concrete in column applications." 27th Biennial National Conference of the Concrete Institute of Australia (Concrete 2015) in conjunction with the 69th RILEM Week: Construction Innovations, Research into Practice. Melbourne, Australia 30 Aug - 02 Sep 2015 Australia.
Stress-strain model for high strength concrete confined by FRP
Lokuge, W. P., Setunge, S. and Sanjayan, J. G.. 2011. "Stress-strain model for high strength concrete confined by FRP." Fragomeni, Sam, Venkatesan, Srikanth, Lam, Nelson T. K. and Setunge, Sujeeva (ed.) 21st Australasian Conference on the Mechanics of Structures and Materials (ACMSM 21). Melbourne, Australia 07 - 10 Dec 2010 Leiden, Netherlands. https://doi.org/10.1201/b10571-85
Modelling eccentrically loaded high-strength concrete columns
Lokuge, Weena, Setunge, Sujeeva and Sanjayan, J. G.. 2003. "Modelling eccentrically loaded high-strength concrete columns." Magazine of Concrete Research. 55 (4), pp. 331-341.
Triaxial test results of high-strength concrete subjected to cyclic loading
Lokuge, Weena, Sanjayan, J. G. and Setunge, Sujeeva. 2003. "Triaxial test results of high-strength concrete subjected to cyclic loading." Magazine of Concrete Research. 55 (4), pp. 321-329.
Constitutive model for confined high strength concretes subjected to cyclic loading
Lokuge, Weena, Sanjayan, J. G. and Setunge, Sujeeva. 2004. "Constitutive model for confined high strength concretes subjected to cyclic loading." Journal of Materials in Civil Engineering. 16 (4), pp. 297-305. https://doi.org/10.1061/~ASCE!0899-1561~2004!16:4~297!
Stress-strain model for laterally confined concrete
Lokuge, Weena P., Sanjayan, J. G. and Setunge, Sujeeva. 2005. "Stress-strain model for laterally confined concrete." Journal of Materials in Civil Engineering. 17 (6), pp. 607-616. https://doi.org/10.1061/ASCE0899-1561200517:6607