Rheological characterization of ultra-high performance concrete for 3D printing

Contribution to Journal


Arunothayan, Arun R, Nematollahi, Behzad, Khayat, Kamal H, Ramesh, A. and Sanjayan, Jay G. 2023. "Rheological characterization of ultra-high performance concrete for 3D printing." Cement and Concrete Composites. 136, p. 104854. https://doi.org/10.1016/j.cemconcomp.2022.104854
Article Title

Rheological characterization of ultra-high performance concrete for 3D printing

ERA Journal ID21082
AuthorsArunothayan, Arun R, Nematollahi, Behzad, Khayat, Kamal H, Ramesh, A. and Sanjayan, Jay G
Journal TitleCement and Concrete Composites
Journal Citation136, p. 104854
Number of Pages104854
Year2023
PublisherElsevier
ISSN0958-9465
1873-393X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cemconcomp.2022.104854
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0958946522004474
Abstract

The authors recently developed a 3D-printable ultra-high performance fiber-reinforced concrete (3DP-UHPFRC) for additive construction of structural members with significantly reduced reliance on steel bars. This study investigates the rheological behavior of the developed 3DP-UHPFRC. The effects of two major factors affecting the performance of 3DP-UHPFRC, namely steel fiber volume (0, 1%, and 2%) and nano-clay (NC) content (0, 0.1%, and 0.2% by binder mass) on workability, static yield stress, dynamic yield stress, and apparent viscosity were determined. Test results showed that the inclusion of steel fibers and NC reduced the workability and led to a significant increase in the static yield stress, dynamic yield stress, and apparent viscosity. However, the effect of NC content on the rheological properties became negligible in the mixtures made with 2% fiber content. Similarly, the effect of steel fiber volume became negligible in the mixtures made with 0.2% NC. In addition, the influence of changes in rheology due to the addition of steel fiber and NC on the extrudability and buildability of the mixtures were investigated by 3D-printing of 500 mm high hollow columns with three different print speeds. The results showed all mixtures exhibited satisfactory extrudability (i.e., no blockage of extruder or tearing of filaments was observed). In addition, the buildability of the mixtures increased as the steel fiber and NC contents increased.

Keywords3D concrete printing, Extrusion, Nano-clay, Rheology, Steel fibers, UHPFRC
ANZSRC Field of Research 2020401401. Additive manufacturing
400505. Construction materials
Permalink -

https://research.usq.edu.au/item/zy4w9/rheological-characterization-of-ultra-high-performance-concrete-for-3d-printing

  • 0
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Impact response of textile-reinforced 3D printed concrete panels
Ramesh, Akilesh, Rajeev, Pathmanathan, Xu, Shanqing, Sanjayan, Jay, Lu, Guoxing and Ramesh, A.. 2024. "Impact response of textile-reinforced 3D printed concrete panels." Engineering Structures. 315, p. 118489. https://doi.org/10.1016/j.engstruct.2024.118489
In-process textile reinforcement method for 3D concrete printing and its structural performance
Ramesh, Akilesh, Rajeev, Pathmanathan, Sanjayan, Jay, Mechtcherine, Viktor and Ramesh, A.. 2024. "In-process textile reinforcement method for 3D concrete printing and its structural performance." Engineering Structures. 314, p. 118337. https://doi.org/10.1016/j.engstruct.2024.118337
Bond-slip behaviour of textile-reinforcement in 3D printed concrete
Ramesh, Akilesh, Rajeev, Pathmanathan, Sanjayan, Jay and Ramesh, A.. 2024. "Bond-slip behaviour of textile-reinforcement in 3D printed concrete." Journal of Building Engineering. 86, p. 108873. https://doi.org/10.1016/j.jobe.2024.108873
Thermal performance and life cycle analysis of 3D printed concrete wall building
Ramesh, Akilesh, Navaratnam, Satheeskumar, Rajeev, Pathmanathan, Sanjayan, Jay and Ramesh, A.. 2024. "Thermal performance and life cycle analysis of 3D printed concrete wall building." Energy and Buildings. 320, p. 114604. https://doi.org/10.1016/j.enbuild.2024.114604
Waste Paint as Admixture for Glass Fiber–Reinforced Concrete Building Façades
Fernando, Dushan, Rajeev, Pathmanathan, Ramesh, A. and Sanjayan, Jay. 2024. "Waste Paint as Admixture for Glass Fiber–Reinforced Concrete Building Façades." Journal of Materials in Civil Engineering. 36 (10), p. 04024340. https://doi.org/10.1061/JMCEE7.MTENG-17692
Fire resistance of 3D printed ultra-high performance concrete panels
Arunothayan, Arun R., Ramesh, Akilesh and Sanjayan, Jay G.. 2024. "Fire resistance of 3D printed ultra-high performance concrete panels." Journal of Building Engineering. 98. https://doi.org/10.1016/j.jobe.2024.111100
Using Fibre recovered from face mask waste to improve printability in 3D concrete printing
Rajeev, Pathmanathan, Ramesh, Akilesh, Navaratnam, Satheeskumar and Sanjayan, Jay. 2023. "Using Fibre recovered from face mask waste to improve printability in 3D concrete printing." Cement and Concrete Composites. 139. https://doi.org/10.1016/j.cemconcomp.2023.105047
Behaviour of CFST columns and their classification based on ductility factor and failure modes
Ramesh, A., Peter, Minu Ann, Sajith, AS and Nagarajan, Praveen. 2022. "Behaviour of CFST columns and their classification based on ductility factor and failure modes." Journal of Structural Engineering (JoSE). 48 (6), pp. 425-435.
Need of an efficient particle size analysis and its influence on properties of concrete
Gopinath, Athira, A., Bahurudeen, Ramesh, Akilesh and Kumar, Naveen. 2017. "Need of an efficient particle size analysis and its influence on properties of concrete." Indian Concrete Institute (ICI) Journal. 12, pp. 51-68.