In-line activation of geopolymer slurry for concrete 3D printing

Article


Muthukrishnan, Shravan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2022. "In-line activation of geopolymer slurry for concrete 3D printing." Cement and Concrete Research. 162. https://doi.org/10.1016/j.cemconres.2022.107008
Article Title

In-line activation of geopolymer slurry for concrete 3D printing

ERA Journal ID4164
Article CategoryArticle
AuthorsMuthukrishnan, Shravan, Ramakrishnan, Sayanthan and Sanjayan, Jay
Journal TitleCement and Concrete Research
Journal Citation162
Article Number107008
Number of Pages14
Year2022
PublisherElsevier
Place of PublicationUnited Kingdom
ISSN0008-8846
1873-3948
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cemconres.2022.107008
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0008884622003003
Abstract

In-line activation techniques in concrete 3D printing enhance the buildability of fresh concrete without influencing its pumpability, thus enabling fast construction rates with long pumping durations. While the in-line activation of cementitious mixes with set-accelerators is a promising approach, the set-accelerators fail in geopolymer system. Therefore, this study investigates a new approach of attaining on-demand setting in geopolymer by alkali activation of binder slurry at the print head. The primary advantage of the proposed method is that the mix remains non-activated until it reaches the print head, thus facilitating a long pumping duration. It was found that the mix design parameters (i.e., precursors to activator ratio, fly ash to slag ratio etc.) and operating conditions (mixing duration of precursor slurry, stage wise activation etc.,) are critical in attaining the desired fresh concrete properties in geopolymer concrete. This is demonstrated by the fact that the optimum mix design chosen with 20 wt% of fly ash as precursor and the activator dosage of 35 wt% of binder showed a yield strength growth rate from ∼500 Pa before activation to ∼70 kPa in 20 min after activation. Moreover, this study provides a new insight into the potential benefits of polycarboxylate based superplasticiser, which was widely reported as an incompatible admixture for silicate activated geopolymer concrete.

KeywordsSet-on-demand concrete ; Buildability; Superplasticiser; Slag; Alkali-activated binders
ANZSRC Field of Research 2020400505. Construction materials
401401. Additive manufacturing
401602. Composite and hybrid materials
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsSwinburne University of Technology
Permalink -

https://research.usq.edu.au/item/yyz92/in-line-activation-of-geopolymer-slurry-for-concrete-3d-printing

  • 19
    total views
  • 1
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

The ambient and elevated temperature performance of hemp fibre reinforced alkali-activated cement foam: Effects of fibre dosage and alkali treatment
Dhasindrakrishna, K, Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "The ambient and elevated temperature performance of hemp fibre reinforced alkali-activated cement foam: Effects of fibre dosage and alkali treatment." Journal of Building Engineering. 76. https://doi.org/10.1016/j.jobe.2023.107131
3D concrete printing of eco-friendly geopolymer containing brick waste
Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "3D concrete printing of eco-friendly geopolymer containing brick waste." Cement and Concrete Composites. 138. https://doi.org/10.1016/j.cemconcomp.2023.104943
Rapid early age strength development of in-line activated geopolymer for concrete 3D printing
Muthukrishnan, Shravan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "Rapid early age strength development of in-line activated geopolymer for concrete 3D printing." Construction and Building Materials. 406. https://doi.org/10.1016/j.conbuildmat.2023.133312
Effect of Magnetorheological additives on the buildability of 3D concrete printing
Kanagasuntharam, Sasitharan, Ramakrishnan, Sayanthan, Muthukrishnan, Shravan and Sanjayan, Jay. 2023. "Effect of Magnetorheological additives on the buildability of 3D concrete printing." Journal of Building Engineering. 74. https://doi.org/10.1016/j.jobe.2023.106814
In-line activation of cementitious materials for 3D concrete printing
Ramakrishnan, Sayanthan, Kanagasuntharam, Sasitharan and Sanjayan, Jay. 2022. "In-line activation of cementitious materials for 3D concrete printing." Cement and Concrete Composites. 131. https://doi.org/10.1016/j.cemconcomp.2022.104598
Enhancing the properties of foam concrete 3D printing using porous aggregates
Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2022. "Enhancing the properties of foam concrete 3D printing using porous aggregates." Cement and Concrete Composites. 133. https://doi.org/10.1016/j.cemconcomp.2022.104687
Use of geopolymer concrete in column applications
Lokuge, Weena, Sanjayan, Jay and Setunge, Sujeeva. 2015. "Use of geopolymer concrete in column applications." 27th Biennial National Conference of the Concrete Institute of Australia (Concrete 2015) in conjunction with the 69th RILEM Week: Construction Innovations, Research into Practice. Melbourne, Australia 30 Aug - 02 Sep 2015 Australia.
Stress-strain model for high strength concrete confined by FRP
Lokuge, W. P., Setunge, S. and Sanjayan, J. G.. 2011. "Stress-strain model for high strength concrete confined by FRP." Fragomeni, Sam, Venkatesan, Srikanth, Lam, Nelson T. K. and Setunge, Sujeeva (ed.) 21st Australasian Conference on the Mechanics of Structures and Materials (ACMSM 21). Melbourne, Australia 07 - 10 Dec 2010 Leiden, Netherlands. https://doi.org/10.1201/b10571-85
Modelling eccentrically loaded high-strength concrete columns
Lokuge, Weena, Setunge, Sujeeva and Sanjayan, J. G.. 2003. "Modelling eccentrically loaded high-strength concrete columns." Magazine of Concrete Research. 55 (4), pp. 331-341.
Triaxial test results of high-strength concrete subjected to cyclic loading
Lokuge, Weena, Sanjayan, J. G. and Setunge, Sujeeva. 2003. "Triaxial test results of high-strength concrete subjected to cyclic loading." Magazine of Concrete Research. 55 (4), pp. 321-329.
Constitutive model for confined high strength concretes subjected to cyclic loading
Lokuge, Weena, Sanjayan, J. G. and Setunge, Sujeeva. 2004. "Constitutive model for confined high strength concretes subjected to cyclic loading." Journal of Materials in Civil Engineering. 16 (4), pp. 297-305. https://doi.org/10.1061/~ASCE!0899-1561~2004!16:4~297!
Stress-strain model for laterally confined concrete
Lokuge, Weena P., Sanjayan, J. G. and Setunge, Sujeeva. 2005. "Stress-strain model for laterally confined concrete." Journal of Materials in Civil Engineering. 17 (6), pp. 607-616. https://doi.org/10.1061/ASCE0899-1561200517:6607