3D concrete printing of eco-friendly geopolymer containing brick waste

Article


Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "3D concrete printing of eco-friendly geopolymer containing brick waste." Cement and Concrete Composites. 138. https://doi.org/10.1016/j.cemconcomp.2023.104943
Article Title

3D concrete printing of eco-friendly geopolymer containing brick waste

ERA Journal ID21082
Article CategoryArticle
AuthorsPasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay
Journal TitleCement and Concrete Composites
Journal Citation138
Article Number104943
Number of Pages11
Year2023
PublisherElsevier
Place of PublicationUnited Kingdom
ISSN0958-9465
1873-393X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cemconcomp.2023.104943
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0958946523000173
Abstract

This study investigates alkali-activated brick waste powder as the binder for developing 3D printable geopolymer mixes. The brick waste was used as a partial replacement to fly ash in geopolymer binders. The effect of brick waste content on the fresh properties of printable mixes, such as flow, setting time and rheological properties were investigated. Besides, the hardened properties of 3D printed brick waste geopolymer were evaluated with the varying brick waste content in the mix. The test results demonstrated that the fresh properties of 3D printable mixes were improved with the brick waste content in the mix. Compared to the control mix, the mixes containing brick waste displayed high yield strength and apparent viscosity at an early age. On the contrary, the hardened properties of compressive strength and interlayer strength of 3D printed concrete specimens were decreased with the high brick waste content; however, the incorporation of brick waste for up to 10% has enhanced the hardened properties. Finally, the sustainability assessment of brick waste geopolymer studied with embodied energy and carbon emission calculations reveals the proposed geopolymer concrete could reduce the embodied energy and carbon emission by up to 60–80%, compared to OPC concrete.

KeywordsGeopolymer concrete ; Digital construction ; Brick waste ; Rheological properties ; Porosity; Compressive strength
ANZSRC Field of Research 2020400505. Construction materials
401401. Additive manufacturing
401602. Composite and hybrid materials
Byline AffiliationsSwinburne University of Technology
Permalink -

https://research.usq.edu.au/item/z1q2x/3d-concrete-printing-of-eco-friendly-geopolymer-containing-brick-waste

Download files


Published Version
1-s2.0-S0958946523000173-main.pdf
License: CC BY-NC-ND 4.0
File access level: Anyone

  • 28
    total views
  • 34
    total downloads
  • 1
    views this month
  • 3
    downloads this month

Export as

Related outputs

Investigating PCM encapsulated NaOH additive for set-on-demand in 3D concrete printing
Kanagasuntharam, Sasitharan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2024. "Investigating PCM encapsulated NaOH additive for set-on-demand in 3D concrete printing." Cement and Concrete Composites. 145. https://doi.org/10.1016/j.cemconcomp.2023.105313
The ambient and elevated temperature performance of hemp fibre reinforced alkali-activated cement foam: Effects of fibre dosage and alkali treatment
Dhasindrakrishna, K, Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "The ambient and elevated temperature performance of hemp fibre reinforced alkali-activated cement foam: Effects of fibre dosage and alkali treatment." Journal of Building Engineering. 76. https://doi.org/10.1016/j.jobe.2023.107131
Rapid early age strength development of in-line activated geopolymer for concrete 3D printing
Muthukrishnan, Shravan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2023. "Rapid early age strength development of in-line activated geopolymer for concrete 3D printing." Construction and Building Materials. 406. https://doi.org/10.1016/j.conbuildmat.2023.133312
Effect of Magnetorheological additives on the buildability of 3D concrete printing
Kanagasuntharam, Sasitharan, Ramakrishnan, Sayanthan, Muthukrishnan, Shravan and Sanjayan, Jay. 2023. "Effect of Magnetorheological additives on the buildability of 3D concrete printing." Journal of Building Engineering. 74. https://doi.org/10.1016/j.jobe.2023.106814
In-line activation of cementitious materials for 3D concrete printing
Ramakrishnan, Sayanthan, Kanagasuntharam, Sasitharan and Sanjayan, Jay. 2022. "In-line activation of cementitious materials for 3D concrete printing." Cement and Concrete Composites. 131. https://doi.org/10.1016/j.cemconcomp.2022.104598
Enhancing the properties of foam concrete 3D printing using porous aggregates
Pasupathy, Kirubajiny, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2022. "Enhancing the properties of foam concrete 3D printing using porous aggregates." Cement and Concrete Composites. 133. https://doi.org/10.1016/j.cemconcomp.2022.104687
In-line activation of geopolymer slurry for concrete 3D printing
Muthukrishnan, Shravan, Ramakrishnan, Sayanthan and Sanjayan, Jay. 2022. "In-line activation of geopolymer slurry for concrete 3D printing." Cement and Concrete Research. 162. https://doi.org/10.1016/j.cemconres.2022.107008
Use of geopolymer concrete in column applications
Lokuge, Weena, Sanjayan, Jay and Setunge, Sujeeva. 2015. "Use of geopolymer concrete in column applications." 27th Biennial National Conference of the Concrete Institute of Australia (Concrete 2015) in conjunction with the 69th RILEM Week: Construction Innovations, Research into Practice. Melbourne, Australia 30 Aug - 02 Sep 2015 Australia.
Stress-strain model for high strength concrete confined by FRP
Lokuge, W. P., Setunge, S. and Sanjayan, J. G.. 2011. "Stress-strain model for high strength concrete confined by FRP." Fragomeni, Sam, Venkatesan, Srikanth, Lam, Nelson T. K. and Setunge, Sujeeva (ed.) 21st Australasian Conference on the Mechanics of Structures and Materials (ACMSM 21). Melbourne, Australia 07 - 10 Dec 2010 Leiden, Netherlands. https://doi.org/10.1201/b10571-85
Modelling eccentrically loaded high-strength concrete columns
Lokuge, Weena, Setunge, Sujeeva and Sanjayan, J. G.. 2003. "Modelling eccentrically loaded high-strength concrete columns." Magazine of Concrete Research. 55 (4), pp. 331-341.
Triaxial test results of high-strength concrete subjected to cyclic loading
Lokuge, Weena, Sanjayan, J. G. and Setunge, Sujeeva. 2003. "Triaxial test results of high-strength concrete subjected to cyclic loading." Magazine of Concrete Research. 55 (4), pp. 321-329.
Constitutive model for confined high strength concretes subjected to cyclic loading
Lokuge, Weena, Sanjayan, J. G. and Setunge, Sujeeva. 2004. "Constitutive model for confined high strength concretes subjected to cyclic loading." Journal of Materials in Civil Engineering. 16 (4), pp. 297-305. https://doi.org/10.1061/~ASCE!0899-1561~2004!16:4~297!
Stress-strain model for laterally confined concrete
Lokuge, Weena P., Sanjayan, J. G. and Setunge, Sujeeva. 2005. "Stress-strain model for laterally confined concrete." Journal of Materials in Civil Engineering. 17 (6), pp. 607-616. https://doi.org/10.1061/ASCE0899-1561200517:6607