The comparative genomics of monotremes, marsupials, and pinnipeds: models to examine the functions of milk proteins

Edited book (chapter)


Sharp, Julie A., Watt, Ashalyn, Bisana, Swathi, Modepalli, Vengama, Wanyonyi, Stephen, Kumar, Amit, Kwek, Joly, Collins, Rod, Lefevre, Christopher and Nicholas, Kevin R.. 2014. "The comparative genomics of monotremes, marsupials, and pinnipeds: models to examine the functions of milk proteins ." Singh, Harjinder, Boland, Mike and Thompson, Abby (ed.) Milk proteins: from expression to food. Amsterdam, The Netherlands. Elsevier. pp. 75-112
Chapter Title

The comparative genomics of monotremes, marsupials, and pinnipeds: models to examine the functions of milk proteins

Book Chapter CategoryEdited book (chapter)
ERA Publisher ID1821
Book TitleMilk proteins: from expression to food
AuthorsSharp, Julie A. (Author), Watt, Ashalyn (Author), Bisana, Swathi (Author), Modepalli, Vengama (Author), Wanyonyi, Stephen (Author), Kumar, Amit (Author), Kwek, Joly (Author), Collins, Rod (Author), Lefevre, Christopher (Author) and Nicholas, Kevin R. (Author)
EditorsSingh, Harjinder, Boland, Mike and Thompson, Abby
Edition2nd edition
Page Range75-112
SeriesFood Science and Technology International Series
Chapter Number3
Number of Pages38
Year2014
PublisherElsevier
Place of PublicationAmsterdam, The Netherlands
ISBN9780124051713
Digital Object Identifier (DOI)https://doi.org/10.1016/B978-0-12-405171-3.00003-9
Web Address (URL)http://hdl.handle.net/10536/DRO/DU:30064955
Abstract

Milk has many functions, ranging from the provision of factors crucial to the operation of the mammary gland and the development of the suckled young through to their protection from infection. Lactation evolved about 200 million years ago with the aplacental, egg-laying monotremes, but since that time there has been extensive adaptation to reproduction, including a large repertoire of lactation strategies. This chapter discusses three animal models with extreme adaptation to lactation, and examines the option of exploiting their comparative biology to identify milk protein bioactives that may have potential in functional foods or pharmaceuticals. The echidna (Tachyglossus aculeatus, a monotreme) has a fascinating combination of reptilian and mammalian characteristics. It retains a primitive component of reptilian reproduction in the form of laying shelled eggs, but it also has a prototherian lactation process. The tammar wallaby (Macropus eugenii, a marsupial) has adopted a reproductive strategy that includes a short gestation (26.5 days), birth of an immature young, and a relatively long lactation (300 days). The composition of milk changes progressively during the lactation cycle, and these changes in milk composition subsequently control development of the young. The tammar can also practice concurrent asynchronous lactation; the mother provides a concentrated milk for an older animal that is out of the pouch, and a dilute milk from an adjacent mammary gland for a newborn pouch young. The third study species, the Cape fur seal (Arctocephalus pusilluspusillus, a eutherian), has a lactation characterized by a repeated cycle of long at-sea foraging trips (up to 23 days) alternating with short suckling periods of 2–3 days ashore. Lactation almost ceases while the seal is offshore, but the mammary gland does not progress to involution and apoptosis.Technology platforms using genomics, proteomics, and bioinformatics have been used to exploit these models to identify milk bioactives. In addition, the availability of sequenced marsupial, dog, platypus, and bovine genomes permits rapid transfer of information to the cow to provide outcomes for the dairy industry.

Keywordsextreme lactation, milk composition, comparative genomics, bioactive, growth and development
ANZSRC Field of Research 2020310912. Comparative physiology
310903. Animal developmental and reproductive biology
310505. Gene expression (incl. microarray and other genome-wide approaches)
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsDeakin University
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q3x12/the-comparative-genomics-of-monotremes-marsupials-and-pinnipeds-models-to-examine-the-functions-of-milk-proteins

  • 973
    total views
  • 16
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Functional Foods Research Group: Stephen Wanyonyi
Wanyonyi, Stephen. Functional Foods Research Group: Stephen Wanyonyi. Toowoomba. https://doi.org/10.26192/2z6r-wx03
Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats
du Preez, Ryan, Wanyonyi, Stephen, Mouatt, Peter, Panchal, Sunil K. and Brown, Lindsay. 2020. "Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats." Nutrients. 12 (4), pp. 1-16. https://doi.org/10.3390/nu12040931
Linseed components are more effective than whole linseed in reversing diet-induced metabolic syndrome in rats
Shafie, Siti Raihanah, Wanyonyi, Stephen, Panchal, Sunil K. and Brown, Lindsay. 2019. "Linseed components are more effective than whole linseed in reversing diet-induced metabolic syndrome in rats." Nutrients. 11 (1677), pp. 1-16. https://doi.org/10.3390/nu11071677
Achacha (Garcinia humilis) Rind Improves Cardiovascular Function in Rats with Diet-Induced Metabolic Syndrome
John, Oliver D., Wanyonyi, Stephen, Mouatt, Peter, Panchal, Sunil K. and Brown, Lindsay. 2018. "Achacha (Garcinia humilis) Rind Improves Cardiovascular Function in Rats with Diet-Induced Metabolic Syndrome." Nutrients. 10 (10), pp. 1-15. https://doi.org/10.3390/nu10101425
Kappaphycus alvarezii as a food supplement prevents diet-induced metabolic syndrome in rats
Wanyonyi, Stephen, du Preez, Ryan, Brown, Lindsay, Paul, Nicholas A. and Panchal, Sunil K.. 2017. "Kappaphycus alvarezii as a food supplement prevents diet-induced metabolic syndrome in rats." Nutrients. 9 (11). https://doi.org/10.3390/nu9111261
Inhibition of inosine monophosphate dehydrogenase reduces adipogenesis and diet-induced obesity
Su, Hua, Gunter, Jennifer H., de Vries, Melissa, Connor, Tim, Wanyonyi, Stephen, Newell, Felicity S., Segal, David, Molero, Juan Carlos, Reizes, Ofer, Prins, Johannes B., Hutley, Louise J., Walder, Ken and Whitehead, Jonathan P.. 2009. "Inhibition of inosine monophosphate dehydrogenase reduces adipogenesis and diet-induced obesity." Biochemical and Biophysical Research Communications. 386 (2), pp. 351-355. https://doi.org/10.1016/j.bbrc.2009.06.040
Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome
Panchal, Sunil K., Wanyonyi, Stephen and Brown, Lindsay. 2017. "Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome." Current Hypertension Reports. 19 (3), pp. 10-20. https://doi.org/10.1007/s11906-017-0701-x
A gene expression signature for insulin resistance
Konstantopoulos, Nicky, Foletta, Victoria C., Segal, David H., Shields, Katherine A., Sanigorski, Andrew, Windmill, Kelly, Swinton, Courtney, Connor, Tim, Wanyonyi, Stephen, Dyer, Thomas D., Fahey, Richard P., Watt, Rose A., Curran, Joanne E., Molero, Juan C., Krippner, Guy, Collier, Greg R., James, David E., Blangero, John, Jowett, Jeremy B. and Walder, Ken R.. 2011. "A gene expression signature for insulin resistance." Physiological Genomics. 43 (3), pp. 110-120. https://doi.org/10.1152/physiolgenomics.00115.2010
Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity
Wanyonyi, Stephen S., Sharp, Julie A., Khalil, Elie, Lefevre, Christophe and Nicholas, Kevin R.. 2011. "Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity." Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology. 160 (3), pp. 431-439. https://doi.org/10.1016/j.cbpa.2011.07.015
Methazolamide is a new hepatic insulin sensitizer that lowers blood glucose in vivo
Konstantopoulos, Nicky, Molero, Juan C., McGee, Sean L., Spolding, Briana, Connor, Tim, de Vries, Melissa, Wanyonyi, Stephen, Fahey, Richard, Morrison, Shona, Swinton, Courtney, Jones, Sharon, Cooper, Adrian, Garcia-Guerra, Lucia, Foletta, Victoria C., Krippner, Guy, Andrikopoulos, Sofianos and Walder, Ken R.. 2012. "Methazolamide is a new hepatic insulin sensitizer that lowers blood glucose in vivo." Diabetes. 61 (8), pp. 2146-2154. https://doi.org/10.2337/db11-0578
The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives
Nicholas, Kevin, Sharp, Julie, Watt, Ashalyn, Wanyonyi, Stephen, Crowley, Tamsyn, Gillespie, Meagan and Lefevre, Christophe. 2012. "The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives." Seminars in Cell and Developmental Biology. 23 (5), pp. 547-556. https://doi.org/10.1016/j.semcdb.2012.03.016
The extracellular matrix regulates MaeuCath1a gene expression
Wanyonyi, Stephen S., Lefevre, Christophe, Sharp, Julie A. and Nicholas, Kevin R.. 2013. "The extracellular matrix regulates MaeuCath1a gene expression." Developmental and Comparative Immunology. 40 (3-4), pp. 289-299. https://doi.org/10.1016/j.dci.2013.02.010
The extracellular matrix locally regulates asynchronous concurrent lactation in tammar wallaby (Macropus eugenii)
Wanyonyi, Stephen S., Lefevre, Christophe, Sharp, Julie A. and Nicholas, Kevin R.. 2013. "The extracellular matrix locally regulates asynchronous concurrent lactation in tammar wallaby (Macropus eugenii)." Matrix Biology. 32 (6), pp. 342-351. https://doi.org/10.1016/j.matbio.2013.02.001
The tammar wallaby: a marsupial model to examine the timed delivery and role of bioactives in milk
Sharp, Julie A., Wanyonyi, Stephen, Modepalli, Vengama, Watt, Ashalyn, Kuruppath, Sanjana, Hinds, Lyn A., Kumar, Amit, Abud, Helen E., Lefevre, Christophe and Nicholas, Kevin R.. 2017. "The tammar wallaby: a marsupial model to examine the timed delivery and role of bioactives in milk." General and Comparative Endocrinology. 244, pp. 164-177. https://doi.org/10.1016/j.ygcen.2016.08.007
Transcriptome analysis of mammary epithelial cell gene expression reveals novel roles of the extracellular matrix
Wanyonyi, Stephen S., Kumar, Amit, Du Preez, Ryan, Lefevre, Christophe and Nicholas, Kevin R.. 2017. "Transcriptome analysis of mammary epithelial cell gene expression reveals novel roles of the extracellular matrix." Biochemistry and Biophysics Reports. 12, pp. 120-128. https://doi.org/10.1016/j.bbrep.2017.08.013
Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells
Gao, Yuan, Hannan, Nicholas R. F., Wanyonyi, Stephen, Konstantopolous, Nicky, Pagnon, Joanne, Feng, Helen C., Jowett, Jeremy B. M., Kim, Kee-Hong, Walder, Ken and Collier, Greg R.. 2006. "Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells." Cytokine. 33 (5), pp. 246-251. https://doi.org/10.1016/j.cyto.2006.02.005