Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells

Article


Gao, Yuan, Hannan, Nicholas R. F., Wanyonyi, Stephen, Konstantopolous, Nicky, Pagnon, Joanne, Feng, Helen C., Jowett, Jeremy B. M., Kim, Kee-Hong, Walder, Ken and Collier, Greg R.. 2006. "Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells." Cytokine. 33 (5), pp. 246-251. https://doi.org/10.1016/j.cyto.2006.02.005
Article Title

Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells

ERA Journal ID15481
Article CategoryArticle
AuthorsGao, Yuan (Author), Hannan, Nicholas R. F. (Author), Wanyonyi, Stephen (Author), Konstantopolous, Nicky (Author), Pagnon, Joanne (Author), Feng, Helen C. (Author), Jowett, Jeremy B. M. (Author), Kim, Kee-Hong (Author), Walder, Ken (Author) and Collier, Greg R. (Author)
Journal TitleCytokine
Journal Citation33 (5), pp. 246-251
Number of Pages6
Year2006
Place of PublicationUnited Kingdom
ISSN1096-0023
1043-4666
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cyto.2006.02.005
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S1043466606000512
Abstract

SEPS1 (also called selenoprotein S, SelS) plays an important role in the production of inflammatory cytokines and its expression is activated by endoplasmic reticulum (ER) stress. In this report, we have identified two binding sites for the nuclear factor kappa B in the human SEPS1 promoter. SEPS1 gene expression, protein levels and promoter activity were all increased 2-3-fold by TNF-alpha and IL-1beta in HepG2 cells. We have also confirmed that the previously proposed ER stress response element GGATTTCTCCCCCGCCACG in the SEPS1 proximate promoter is fully functional and responsive to ER stress. However, concurrent treatment of HepG2 cells with IL-1beta and ER stress produced no additive effect on SEPS1 gene expression. We conclude that SEPS1 is a new target gene of NF-kappaB. Together with our previous findings that SEPS1 may regulate cytokine production in macrophage cells, we propose a regulatory loop between cytokines and SEPS1 that plays a key role in control of the inflammatory response.

Keywordsselenoprotein; glucose-regulated protein; ER stress; cytokine; gene expression
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020321402. Clinical pharmacology and therapeutics
321401. Basic pharmacology
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Institution of OriginUniversity of Southern Queensland
Byline AffiliationsDeakin University
Baker Heart and Diabetes Institute, Australia
Medical College of Wisconsin, United States
ChemGenex Pharmaceuticals, Australia
Permalink -

https://research.usq.edu.au/item/q3x8w/activation-of-the-selenoprotein-seps1-gene-expression-by-pro-inflammatory-cytokines-in-hepg2-cells

  • 886
    total views
  • 10
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Functional Foods Research Group: Stephen Wanyonyi
Wanyonyi, Stephen. Functional Foods Research Group: Stephen Wanyonyi. Toowoomba. https://doi.org/10.26192/2z6r-wx03
Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats
du Preez, Ryan, Wanyonyi, Stephen, Mouatt, Peter, Panchal, Sunil K. and Brown, Lindsay. 2020. "Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats." Nutrients. 12 (4), pp. 1-16. https://doi.org/10.3390/nu12040931
Linseed components are more effective than whole linseed in reversing diet-induced metabolic syndrome in rats
Shafie, Siti Raihanah, Wanyonyi, Stephen, Panchal, Sunil K. and Brown, Lindsay. 2019. "Linseed components are more effective than whole linseed in reversing diet-induced metabolic syndrome in rats." Nutrients. 11 (1677), pp. 1-16. https://doi.org/10.3390/nu11071677
Achacha (Garcinia humilis) Rind Improves Cardiovascular Function in Rats with Diet-Induced Metabolic Syndrome
John, Oliver D., Wanyonyi, Stephen, Mouatt, Peter, Panchal, Sunil K. and Brown, Lindsay. 2018. "Achacha (Garcinia humilis) Rind Improves Cardiovascular Function in Rats with Diet-Induced Metabolic Syndrome." Nutrients. 10 (10), pp. 1-15. https://doi.org/10.3390/nu10101425
Kappaphycus alvarezii as a food supplement prevents diet-induced metabolic syndrome in rats
Wanyonyi, Stephen, du Preez, Ryan, Brown, Lindsay, Paul, Nicholas A. and Panchal, Sunil K.. 2017. "Kappaphycus alvarezii as a food supplement prevents diet-induced metabolic syndrome in rats." Nutrients. 9 (11). https://doi.org/10.3390/nu9111261
The comparative genomics of monotremes, marsupials, and pinnipeds: models to examine the functions of milk proteins
Sharp, Julie A., Watt, Ashalyn, Bisana, Swathi, Modepalli, Vengama, Wanyonyi, Stephen, Kumar, Amit, Kwek, Joly, Collins, Rod, Lefevre, Christopher and Nicholas, Kevin R.. 2014. "The comparative genomics of monotremes, marsupials, and pinnipeds: models to examine the functions of milk proteins ." Singh, Harjinder, Boland, Mike and Thompson, Abby (ed.) Milk proteins: from expression to food. Amsterdam, The Netherlands. Elsevier. pp. 75-112
Inhibition of inosine monophosphate dehydrogenase reduces adipogenesis and diet-induced obesity
Su, Hua, Gunter, Jennifer H., de Vries, Melissa, Connor, Tim, Wanyonyi, Stephen, Newell, Felicity S., Segal, David, Molero, Juan Carlos, Reizes, Ofer, Prins, Johannes B., Hutley, Louise J., Walder, Ken and Whitehead, Jonathan P.. 2009. "Inhibition of inosine monophosphate dehydrogenase reduces adipogenesis and diet-induced obesity." Biochemical and Biophysical Research Communications. 386 (2), pp. 351-355. https://doi.org/10.1016/j.bbrc.2009.06.040
Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome
Panchal, Sunil K., Wanyonyi, Stephen and Brown, Lindsay. 2017. "Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome." Current Hypertension Reports. 19 (3), pp. 10-20. https://doi.org/10.1007/s11906-017-0701-x
A gene expression signature for insulin resistance
Konstantopoulos, Nicky, Foletta, Victoria C., Segal, David H., Shields, Katherine A., Sanigorski, Andrew, Windmill, Kelly, Swinton, Courtney, Connor, Tim, Wanyonyi, Stephen, Dyer, Thomas D., Fahey, Richard P., Watt, Rose A., Curran, Joanne E., Molero, Juan C., Krippner, Guy, Collier, Greg R., James, David E., Blangero, John, Jowett, Jeremy B. and Walder, Ken R.. 2011. "A gene expression signature for insulin resistance." Physiological Genomics. 43 (3), pp. 110-120. https://doi.org/10.1152/physiolgenomics.00115.2010
Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity
Wanyonyi, Stephen S., Sharp, Julie A., Khalil, Elie, Lefevre, Christophe and Nicholas, Kevin R.. 2011. "Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity." Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology. 160 (3), pp. 431-439. https://doi.org/10.1016/j.cbpa.2011.07.015
Methazolamide is a new hepatic insulin sensitizer that lowers blood glucose in vivo
Konstantopoulos, Nicky, Molero, Juan C., McGee, Sean L., Spolding, Briana, Connor, Tim, de Vries, Melissa, Wanyonyi, Stephen, Fahey, Richard, Morrison, Shona, Swinton, Courtney, Jones, Sharon, Cooper, Adrian, Garcia-Guerra, Lucia, Foletta, Victoria C., Krippner, Guy, Andrikopoulos, Sofianos and Walder, Ken R.. 2012. "Methazolamide is a new hepatic insulin sensitizer that lowers blood glucose in vivo." Diabetes. 61 (8), pp. 2146-2154. https://doi.org/10.2337/db11-0578
The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives
Nicholas, Kevin, Sharp, Julie, Watt, Ashalyn, Wanyonyi, Stephen, Crowley, Tamsyn, Gillespie, Meagan and Lefevre, Christophe. 2012. "The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives." Seminars in Cell and Developmental Biology. 23 (5), pp. 547-556. https://doi.org/10.1016/j.semcdb.2012.03.016
The extracellular matrix regulates MaeuCath1a gene expression
Wanyonyi, Stephen S., Lefevre, Christophe, Sharp, Julie A. and Nicholas, Kevin R.. 2013. "The extracellular matrix regulates MaeuCath1a gene expression." Developmental and Comparative Immunology. 40 (3-4), pp. 289-299. https://doi.org/10.1016/j.dci.2013.02.010
The extracellular matrix locally regulates asynchronous concurrent lactation in tammar wallaby (Macropus eugenii)
Wanyonyi, Stephen S., Lefevre, Christophe, Sharp, Julie A. and Nicholas, Kevin R.. 2013. "The extracellular matrix locally regulates asynchronous concurrent lactation in tammar wallaby (Macropus eugenii)." Matrix Biology. 32 (6), pp. 342-351. https://doi.org/10.1016/j.matbio.2013.02.001
The tammar wallaby: a marsupial model to examine the timed delivery and role of bioactives in milk
Sharp, Julie A., Wanyonyi, Stephen, Modepalli, Vengama, Watt, Ashalyn, Kuruppath, Sanjana, Hinds, Lyn A., Kumar, Amit, Abud, Helen E., Lefevre, Christophe and Nicholas, Kevin R.. 2017. "The tammar wallaby: a marsupial model to examine the timed delivery and role of bioactives in milk." General and Comparative Endocrinology. 244, pp. 164-177. https://doi.org/10.1016/j.ygcen.2016.08.007
Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci
Kooner, Jaspal S., Saleheem, Danish, Sim, Xueling, Sehmi, Joban, Zhang, Weihua, Frossard, Philippe, Been, Latonya F., Chia, Kee-Seng, Dimas, Antigone S., Hassanali, Neelam, Jafar, Tazeen, Jowett, Jeremy B. M., Li, Xinzhong, Radha, Venkatesan, Rees, Simon D., Takeuchi, Fumihiko, Young, Robin and Pinidiyapathirage, Janani M.. 2011. "Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci." Nature Genetics. 43 (10), pp. 984-989. https://doi.org/10.1038/ng.921
Transcriptome analysis of mammary epithelial cell gene expression reveals novel roles of the extracellular matrix
Wanyonyi, Stephen S., Kumar, Amit, Du Preez, Ryan, Lefevre, Christophe and Nicholas, Kevin R.. 2017. "Transcriptome analysis of mammary epithelial cell gene expression reveals novel roles of the extracellular matrix." Biochemistry and Biophysics Reports. 12, pp. 120-128. https://doi.org/10.1016/j.bbrep.2017.08.013