Benefits from below: silicon supplementation maintains legume productivity under predicted climate change scenarios
Article
Article Title | Benefits from below: silicon supplementation maintains legume productivity under predicted climate change scenarios |
---|---|
ERA Journal ID | 200524 |
Article Category | Article |
Authors | Johnson, Scott N. (Author), Ryalls, James M. W. (Author), Gherlenda, Andrew N. (Author), Frew, Adam (Author) and Hartley, Susan E. (Author) |
Journal Title | Frontiers in Plant Science |
Journal Citation | 9, pp. 1-9 |
Article Number | 202 |
Number of Pages | 9 |
Year | 2018 |
Publisher | Frontiers Media SA |
Place of Publication | Switzerland |
ISSN | 1664-462X |
Digital Object Identifier (DOI) | https://doi.org/10.3389/fpls.2018.00202 |
Web Address (URL) | https://www.frontiersin.org/articles/10.3389/fpls.2018.00202/full |
Abstract | Many studies demonstrate that elevated atmospheric carbon dioxide concentrations (eCO2) can promote root nodulation and biological nitrogen fixation (BNF) in legumes such as lucerne (Medicago sativa). But when elevated temperature (eT) conditions are applied in tandem with eCO2, a more realistic scenario for future climate change, the positive effects of eCO2 on nodulation and BNF in M. sativa are often much reduced. Silicon (Si) supplementation of M. sativa has also been reported to promote root nodulation and BNF, so could potentially restore the positive effects of eCO2 under eT. Increased nitrogen availability, however, could also increase host suitability for aphid pests, potentially negating any benefit. We applied eCO2 (+240 ppm) and eT (+4°C), separately and in combination, to M. sativa growing in Si supplemented (Si+) and un-supplemented soil (Si-) to determine whether Si moderated the effects of eCO2 and eT. Plants were either inoculated with the aphid Acyrthosiphon pisum or insect-free. In Si- soils, eCO2 stimulated plant growth by 67% and nodulation by 42%, respectively, whereas eT reduced these parameters by 26 and 48%, respectively. Aphids broadly mirrored these effects on Si- plants, increasing colonization rates under eCO2 and performing much worse (reduced abundance and colonization) under eT when compared to ambient conditions, confirming our hypothesized link between root nodulation, plant growth, and pest performance. Examined across all CO2 and temperature regimes, Si supplementation promoted plant growth (+93%), and root nodulation (+50%). A. pisum abundance declined sharply under eT conditions and was largely unaffected by Si supplementation. In conclusion, supplementing M. sativa with Si had consistent positive effects on plant growth and nodulation under different CO2 and temperature scenarios. These findings offer potential for using Si supplementation to maintain legume productivity under predicted climate change scenarios without making legumes more susceptible to insect pests. |
Keywords | alfalfa, aphids, atmospheric change, climate change, global warming, silica, silicon |
ANZSRC Field of Research 2020 | 310899. Plant biology not elsewhere classified |
410404. Environmental management | |
410102. Ecological impacts of climate change and ecological adaptation | |
Byline Affiliations | Western Sydney University |
University of Western Sydney | |
University of York, United Kingdom | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q56y1/benefits-from-below-silicon-supplementation-maintains-legume-productivity-under-predicted-climate-change-scenarios
Download files
186
total views76
total downloads2
views this month1
downloads this month