Feature-Based Learning in Drug Prescription System for Medical Clinics
Article
Article Title | Feature-Based Learning in Drug Prescription System for Medical Clinics |
---|---|
ERA Journal ID | 36614 |
Article Category | Article |
Authors | Goh, Wee Pheng (Author), Tao, Xiaohui (Author), Zhang, Ji (Author) and Yong, Jianming (Author) |
Journal Title | Neural Processing Letters |
Journal Citation | 52, pp. 1703-1721 |
Number of Pages | 19 |
Year | 2020 |
Place of Publication | Netherlands |
ISSN | 1370-4621 |
1573-773X | |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s11063-020-10296-7 |
Web Address (URL) | https://link.springer.com/article/10.1007%2Fs11063-020-10296-7 |
Abstract | Rapid increases in data volume and variety pose a challenge to safe drug prescription for health professionals like doctors and dentists. This is addressed by our study, which presents innovative approaches in mining data from drug corpus and extracting feature vectors to combine this knowledge with individual patient medical profiles.Within our three-tiered framework - the prediction layer, the knowledge layer and the presentation layer—we describe multiple approaches in computing similarity ratios from the feature vectors, illustrated with an example of applying the framework in a typical medical clinic. Experimental evaluation shows that the word embedding model performs better than the adverse network model, with a F score of 0.75. The F score is a common metrics used for evaluating the performance of classification algorithms. Similarity to a drug the patient is allergic to or is taking are important considerations for the suitability of a drug for prescription. Hence, such an approach, when integrated within the clinical work-flow, will reduce prescription errors thereby increasing patient health outcomes. |
Keywords | feature vector; similarity ratio; word embedding; adverse network model; personalised drug prescription |
ANZSRC Field of Research 2020 | 469999. Other information and computing sciences not elsewhere classified |
460103. Applications in life sciences | |
Byline Affiliations | School of Sciences |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q5w92/feature-based-learning-in-drug-prescription-system-for-medical-clinics
221
total views8
total downloads5
views this month0
downloads this month