Exoplanet characterization by proxy: a transiting 2.15 R⊕ planet near the habitable zone of the late K dwarf Kepler-61
Article
Article Title | Exoplanet characterization by proxy: a transiting 2.15 R⊕ planet near the habitable zone of the late K dwarf Kepler-61 |
---|---|
ERA Journal ID | 1057 |
Article Category | Article |
Authors | Ballard, Sarah (Author), Charbonneau, David (Author), Fressin, Francois (Author), Torres, Guillermo (Author), Irwin, Jonathan (Author), Desert, Jean Michel (Author), Newton, Elisabeth (Author), Mann, Andrew W. (Author), Ciardi, David R. (Author), Crepp, Justin R. (Author), Henze, Christopher E. (Author), Bryson, Stephen T. (Author), Howell, Steven B. (Author), Horch, Elliott P. (Author), Everett, Mark E. (Author) and Shporer, Avi (Author) |
Journal Title | The Astrophysical Journal: an international review of astronomy and astronomical physics |
Journal Citation | 773 (2), pp. 98-125 |
Article Number | 98 |
Number of Pages | 18 |
Year | 2013 |
Publisher | IOP Publishing |
Place of Publication | United States |
ISSN | 0004-637X |
1538-4357 | |
Digital Object Identifier (DOI) | https://doi.org/10.1088/0004-637X/773/2/98 |
Web Address (URL) | http://iopscience.iop.org/article/10.1088/0004-637X/773/2/98 |
Abstract | We present the validation and characterization of Kepler-61b: a 2.15 R ⊕ planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with a set of spectroscopically similar stars with directly measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15 ± 0.13 R ⊕ and an equilibrium temperature of 273 ± 13 K (given its period of 59.87756 ± 0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby 'proxy' stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses. |
Keywords | eclipses; planetary systems; stars: individual (Kepler-61, KOI 1361, KIC 6960913); |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 510109. Stellar astronomy and planetary systems |
Public Notes | For access to this article, please click on the URL link provided. |
Byline Affiliations | University of Washington, United States |
California Institute of Technology (Caltech), United States | |
University of Hawaii, United States | |
National Aeronautics and Space Administration (NASA), United States | |
University of Notre Dame, United States | |
NASA Ames Research Center, United States | |
Southern Connecticut State University, United States | |
National Optical Astronomy Observatory, United States | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q4311/exoplanet-characterization-by-proxy-a-transiting-2-15-r-planet-near-the-habitable-zone-of-the-late-k-dwarf-kepler-61
1272
total views87
total downloads0
views this month0
downloads this month