Minimally invasive, robot assisted cochlear implantation

Paper


Weber, Stefan, Bell, Brett, Gerber, Nicolas, Williamson, Tom, Brett, Peter, Du, Xinli, Caversaccio, Marco, Proops, David, Coulson, Chris and Reid, Andrew. 2013. "Minimally invasive, robot assisted cochlear implantation." 3rd Joint Workshop on New Technologies for Computer/Robot Assisted Surgery (CRAS 2013). Verona, Italy 11 - 13 Sep 2013 Verona, italy.
Paper/Presentation Title

Minimally invasive, robot assisted cochlear implantation

Presentation TypePaper
AuthorsWeber, Stefan (Author), Bell, Brett (Author), Gerber, Nicolas (Author), Williamson, Tom (Author), Brett, Peter (Author), Du, Xinli (Author), Caversaccio, Marco (Author), Proops, David (Author), Coulson, Chris (Author) and Reid, Andrew (Author)
Journal or Proceedings TitleProceedings of the 3rd Joint Workshop on New Technologies for Computer/Robot Assisted Surgery (CRAS 2013)
Number of Pages4
Year2013
Place of PublicationVerona, italy
Web Address (URL) of Paperhttps://www.cascade-fp7.eu/cras2013/proceedings/cras2013_Weber.pdf
Conference/Event3rd Joint Workshop on New Technologies for Computer/Robot Assisted Surgery (CRAS 2013)
Event Details
3rd Joint Workshop on New Technologies for Computer/Robot Assisted Surgery (CRAS 2013)
Event Date
11 to end of 13 Sep 2013
Event Location
Verona, Italy
Abstract

Cochlear implants allow the restoration of hearing function in patients with severe to profound sensorineural hearing loss through the direct stimulation of the auditory nerve by an electrode array inserted into the inner ear. Typically, access to the cochlea is gained through the performance of a mastoidectomy, which involves the removal of a large portion of the mastoid bone, allowing the surgeon to visualize and protect vital structures within the mastoid during milling. Once access to the cochlea has been achieved, the surgeon may insert the electrode through the round window, or alternatively through an
artificial access called a cochleostomy. Recent advances in image guided robotics have allowed dramatic changes in the
performance of both stages of this procedure. Recent work at the University of Bern has seen the realization of a robotic system designed specifically for minimally invasive cochlear implantation. The system enables significantly reduced invasiveness by removing the need for a mastoidectomy, replacing this with a direct tunnel approach known as direct cochlear access (DCA). Meanwhile, work at Brunel University has focused on improving the safety and accuracy of inner ear access through the cochleostomy. This work describes both of these systems individually and discusses the implications and opportunities associated with the combination of these devices.

Keywordscochleostomy; robotics; robot surgery; image guidance; cochlear; robot surgeryimplant; direct cochlear access
ANZSRC Field of Research 2020400308. Medical devices
400303. Biomechanical engineering
Public Notes

Best paper award. No evidence of copyright restrictions preventing deposit.

Byline AffiliationsUniversity of Bern, Switzerland
Brunel University, United Kingdom
Queen Elizabeth Hospital, United Kingdom
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q450y/minimally-invasive-robot-assisted-cochlear-implantation

Download files


Published Version
  • 1250
    total views
  • 116
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Tactile sensing for tissue discrimination in robotic meat cutting: A feasibility study
Aly, Basem Adel, Low, Tobias, Long, Derek, Brett, Peter and Baillie, Craig. 2024. "Tactile sensing for tissue discrimination in robotic meat cutting: A feasibility study." Journal of Food Engineering. 363. https://doi.org/10.1016/j.jfoodeng.2023.111754
Robotics and sensing technologies in red meat processing: A review
Aly, Basem Adel, Low, Tobias, Long, Derek, Baillie, Craig and Brett, Peter. 2023. "Robotics and sensing technologies in red meat processing: A review." Trends in Food Science and Technology. 137, pp. 142-155. https://doi.org/10.1016/j.tifs.2023.05.015
Review of Technologies, Regulations and Operating Standards for Field Based Autonomous Agricultural Machinery
Baillie, Craig, Torrance, Logan, Long, Derek, Brett, Peter and Humpal, Jacob. 2020. Review of Technologies, Regulations and Operating Standards for Field Based Autonomous Agricultural Machinery. Toowoomba, Australia. University of Southern Queensland.
Space Agriculture: Sensing Crops in Space
Humpal, Jacob, McCarthy, Cheryl, Baillie, Craig, Percy, Cassy and Brett, Peter. 2022. "Space Agriculture: Sensing Crops in Space." GRDC Update Papers.
A tactile sensing approach in stroke rehabilitation
Du, Xinli, Mikov, Nikolay, Mohagheghi, Amir, Kilbride, Cherry, Norris, Meriel and Brett, Peter. 2019. "A tactile sensing approach in stroke rehabilitation." Mechatronics. 59, pp. 213-220. https://doi.org/10.1016/j.mechatronics.2019.03.010
Advancing automation in the agricultural working environment
Brett, P, McCarthy, A, Long, D, Gillies, M, Foley, J and Baillie, C. 2019. "Advancing automation in the agricultural working environment." Allsopp, P. (ed.) 41st Annual Conference of the Australian Society of Sugar Cane Technologists (ASSCT 2019). Toowoomba, Australia 30 Apr - 03 May 2019 Australia.
A smart micro-drill for cochleostomy formation: a comparison of cochlear disturbances with manual drilling and a human trial
Coulson, C. J., Zoka Assadi, M., Taylor, R. P., Du, X., Brett, P. N., Reid, A. P. and Proops, D. W.. 2013. "A smart micro-drill for cochleostomy formation: a comparison of cochlear disturbances with manual drilling and a human trial." Cochlear Implants International. 14 (2), pp. 98-106. https://doi.org/10.1179/1754762811Y.0000000018
A mechatronic solution for stroke rehabilitation in a reaching task
Brett, Peter, Mikov, Nikolay, Mohagheghi, Amir, Korff, Thomas and Du, Xinli. 2016. "A mechatronic solution for stroke rehabilitation in a reaching task." 21st Annual International Conference on Mechatronics and Machine Vision in Practice (M2VIP 2015). Manila, Philippines 07 Jul 2015 Red Hook, NY, United States.
Mechatronic hand-held surgical robots
Brett, P., Du, X., Zoka Assadi, M., Proops, D., Reid, A. and Coulson, C.. 2012. "Mechatronic hand-held surgical robots." Moir, Tom (ed.) 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP 2012). Auckland, New Zealand 28 - 30 Nov 2012 United States.
Performance of the smart surgical micro-drill for cochlear implantation
Brett, P. N., Du, X., Assadi, M., Coulson, C., Proops, D. and Reid, A.. 2011. "Performance of the smart surgical micro-drill for cochlear implantation." 18th Annual International Conference on Mechatronics and Machine Vision in Practice (M2VIP 2011). Brisbane, Australia 06 - 07 Dec 2011 Red Hook, NY, United States.
Verification of cochlea behaviour between numerical approach and experiment measurements
Du, X., Brett, P. N., Assadi, M., Coulson, C., Proops, D. and Reid, A.. 2011. "Verification of cochlea behaviour between numerical approach and experiment measurements." 18th Annual International Conference on Mechatronics and Machine Vision in Practice (M2VIP 2011). Brisbane, Australia 06 - 07 Dec 2011 Red Hook, NY, United States.
Innovative mechatronic techniques for contrasting pressure disturbances in the closed space of cochlea
Zoka-Assadi, Masoud, Du, Xinli, Brett, Peter, Coulson, Chris, Reid, Andrew and Proops, David. 2015. "Innovative mechatronic techniques for contrasting pressure disturbances in the closed space of cochlea." Billingsley, John and Brett, Peter (ed.) Machine vision and mechatronics in practice. Heidelberg, Germany. Springer. pp. 67-76
Smart robotic catheter for Endovascular processes
Brett, Peter, Du, Xinli, Rodriguez Y. Beana, Ferdinando, Hinchliffe, Robert and Thompson, Matt. 2015. "Smart robotic catheter for Endovascular processes." Billingsley, John and Brett, Peter (ed.) 22nd Annual International Conference on Mechatronics and Machine Vision in Practice (M2VIP 2015). Toowoomba, Australia 07 - 09 Dec 2015 Red Hook,NY, United States.
A drilling technology discriminating mediums to cut ahead on the tool path
Brett, P. N., Du, X. and Wilde, S.. 2015. "A drilling technology discriminating mediums to cut ahead on the tool path." Billingsley, John and Brett, Peter (ed.) 22nd Annual International Conference on Mechatronics and Machine Vision in Practice (M2VIP 2015). Toowoomba, Australia 07 - 09 Dec 2015 Red Hook,NY, United States.
Comparison on intracochlear disturbances between drilling a manual and robotic cochleostomy
Z. Assadi, Masoud, Du, Xinli, Dalton, James, Henshaw, Scott, Coulson, Chris J., Reid, Andrew. P., Proops, David W. and Brett, Peter N.. 2013. "Comparison on intracochlear disturbances between drilling a manual and robotic cochleostomy ." Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine. 227 (9), pp. 1002-1008. https://doi.org/10.1177/0954411913488507
Robustness analysis of a smart surgical drill for cochleostomy
Du, Xinli, Z. Assadi, Masoud, Jowitt, Felicity, Brett, Peter N., Henshaw, Scott, Dalton, James, Proops, David W., Coulson, Chris J. and Reid, Andrew P.. 2013. "Robustness analysis of a smart surgical drill for cochleostomy." International Journal of Medical Robotics and Computer Assisted Surgery. 9 (1), pp. 119-126. https://doi.org/10.1002/rcs.1462
Mechatronic feasibility of minimally invasive, atraumatic cochleostomy
Williamson, Tom, Du, Xinli, Bell, Brett, Coulson, Chris, Caversaccio, Marco, Proops, David, Brett, Peter and Weber, Stefan. 2014. "Mechatronic feasibility of minimally invasive, atraumatic cochleostomy." BioMed Research International. 2014. https://doi.org/10.1155/2014/181624
Feasibility study of a hand guided robotic drill for cochleostomy
Brett, Peter, Du, Xinli, Zoka-Assadi, Masoud, Coulson, Chris, Reid, Andrew and Proops, David. 2014. "Feasibility study of a hand guided robotic drill for cochleostomy." BioMed Research International. 2014. https://doi.org/10.1155/2014/656325
Drilling apparatus and methods
Brett, Peter, Taylor, Robin, Proops, David, Coulson, Chris and Griffiths, Mansel V.. 2013. Drilling apparatus and methods. US8463421 B2