Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea

Article


Balotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, C.R.. 2021. "Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea." Environmental Microbiology Reports. 13 (4), pp. 521-532. https://doi.org/10.1111/1758-2229.12955
Article Title

Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea

ERA Journal ID125047
Article CategoryArticle
AuthorsBalotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, C.R.
Journal TitleEnvironmental Microbiology Reports
Journal Citation13 (4), pp. 521-532
Number of Pages12
Year2021
PublisherJohn Wiley & Sons
Place of PublicationUnited Kingdom
ISSN1758-2229
Digital Object Identifier (DOI)https://doi.org/10.1111/1758-2229.12955
Web Address (URL)https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.12955
Abstract

The soil-borne and obligate plant-associated nature of S. subterranea has hindered a detailed study of this pathogen and in particular, the regulatory pathways driving the germination of S. subterranea remain unknown. To better understand the mechanisms that control the transition from dormancy to germination, protein profiles between dormant and germination stimulant-treated resting spores were compared using label-free quantitative proteomics. Among the ~680 proteins identified 20 proteins were found to be differentially expressed during the germination of S. subterranea resting spores. Elongation factor Tu, histones (H2A and H15), proteasome and DJ-1_PfpI, involved in transcription and translation, were upregulated during the germination of resting spores. Downregulation of both actin and beta-tubulin proteins occurred in the germinating spores, indicating that the changes in the cell wall cytoskeleton may be necessary for the morphological changes during the germination of the resting spore in S. subterranea. Our findings provide new approaches for the study of these and similar recalcitrant micro-organisms provide the first insights into the basic protein components of S. subterranea spores. A better understanding of S. subterranea biology may lead to the development of novel approaches for the management of persistent soil inoculum.

KeywordsSpongospora subterranea
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 20203001. Agricultural biotechnology
Public Notes

The accessible file is the accepted version of the paper. Please refer to the URL for the published version.

Byline AffiliationsUniversity of Tasmania
Permalink -

https://research.usq.edu.au/item/y6794/quantitative-proteomics-provides-an-insight-into-germination-related-proteins-in-the-obligate-biotrophic-plant-pathogen-spongospora-subterranea

Download files


Accepted Version
1758-2229.12955.pdf
File access level: Anyone

  • 53
    total views
  • 17
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Unveiling Genetic Resistance to Crown Rot in Watkins Wheat Landrace Diversity Panel
Garg, Bharat, Rubayet, Md. Tanbir, Muthusamy, Karthikeyan, Subramaniam, Geethanjali, McDonald, Stephen, Balotf, Sadegh, Gardiner, Donald, Percy, Cassy and Periyannan, Sambasivam. 2024. "Unveiling Genetic Resistance to Crown Rot in Watkins Wheat Landrace Diversity Panel." 12th Australasian Soilborne Diseases Symposium (ASDS 2024). Kingscliff, Australia 26 - 30 Aug 2024 Australia.
Transcriptomics is essential but not sufficient to unravel complex plant–pathogen interactions
Balotf, Sadegh, Wilson, Richard and Wilson, Calum. 2024. "Transcriptomics is essential but not sufficient to unravel complex plant–pathogen interactions." Plant Cell Reports. 43 (7). https://doi.org/10.1007/s00299-024-03248-1
Enzymatic Investigation of Spongospora subterranea Zoospore Attachment to Roots of Potato Cultivars Resistant or Susceptible to Powdery Scab Disease
Yu, Xian, Wilson, Wilson, Eyles, Eyles, Balotf, Sadegh., Tegg, Robert Stephen and Wilson, Calum Rae. 2023. "Enzymatic Investigation of Spongospora subterranea Zoospore Attachment to Roots of Potato Cultivars Resistant or Susceptible to Powdery Scab Disease." Proteomes. 11 (1). https://doi.org/10.3390/proteomes11010007
Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant-Pathogen Interactions
Balotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2022. "Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant-Pathogen Interactions." Proteomes. 10 (1). https://doi.org/10.3390/proteomes10010005
Non-escaping frost tolerant QTL linked genetic loci at reproductive stage in six wheat DH populations
Zhang, Jingjuan, Islam, Md Shahidul, Zhao, Yun, Anwar, Masood, Alhabbar, Zaid, She, Maoyun, Yang, Rongchang, Juhasz, Angela, Tang, Guixiang, Chen, Jiansheng, Liu, Hang, Jiang, Yanjie, Zhai, Shengnan, Hu, Xin, Rong, Junkang, Zhang, Yingquan, Qin, Yebo, Liu, Qier, Yu, Zitong, ..., Ma, Wujun. 2022. "Non-escaping frost tolerant QTL linked genetic loci at reproductive stage in six wheat DH populations." The Crop Journal. 10 (1), pp. 147-165. https://doi.org/10.1016/j.cj.2021.02.015
Comparative Proteomic Analysis of Potato Roots from Resistant and Susceptible Cultivars to Spongospora subterranea Zoospore Root Attachment In Vitro
Yu, Xian, Wilson, Richard, Balotf, Sadegh, Tegg, Robert S., Eyles, Alieta and Wilson, Calum R.. 2022. "Comparative Proteomic Analysis of Potato Roots from Resistant and Susceptible Cultivars to Spongospora subterranea Zoospore Root Attachment In Vitro." Molecules. 27 (18). https://doi.org/10.3390/molecules27186024
Large-Scale Protein and Phosphoprotein Profiling to Explore Potato Resistance Mechanisms to Spongospora subterranea Infection
Balotf, Sadegh, Wilson, Calum R., Tegg, Robert S., Nichols, David S. and Wilson, Richard. 2022. "Large-Scale Protein and Phosphoprotein Profiling to Explore Potato Resistance Mechanisms to Spongospora subterranea Infection." Frontiers in Plant Science. 13. https://doi.org/10.3389/fpls.2022.872901
Multi-omics reveals mechanisms of resistance to potato root infection by Spongospora subterranea
Balotf, Sadegh, Wilson, Richard, Nichols, David S., Tegg, Robert S. and Wilson, Calum R.. 2022. "Multi-omics reveals mechanisms of resistance to potato root infection by Spongospora subterranea." Scientific Reports. 12 (1). https://doi.org/10.1038/s41598-022-14606-y
In Planta Transcriptome and Proteome Profiles of Spongospora subterranea in Resistant and Susceptible Host Environments Illuminates Regulatory Principles Underlying Host-Pathogen Interaction
Balotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2021. "In Planta Transcriptome and Proteome Profiles of Spongospora subterranea in Resistant and Susceptible Host Environments Illuminates Regulatory Principles Underlying Host-Pathogen Interaction." Biology. 10 (9). https://doi.org/10.3390/biology10090840
Spore Germination of the Obligate Biotroph Spongospora subterranea: Transcriptome Analysis Reveals Germination Associated Genes
Balotf, Sadegh, Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2021. "Spore Germination of the Obligate Biotroph Spongospora subterranea: Transcriptome Analysis Reveals Germination Associated Genes." Frontiers in Microbiology. 12. https://doi.org/10.3389/fmicb.2021.691877
Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations
Zhang, Jingjuan, She, Maoyun, Yang, Rongchang, Jiang, Yanjie, Qin, Yebo, Zhai, Shengnan, Balotf, Sadegh, Zhao, Yun, Jiang, Yanjie, Alhabbar, Zaid, Qin, Yebo, Chen, Jiansheng, Zhai, Shengnan, Liu, Qier, Zheng, Ting, Yang, Fan, Rong, Junkang, Chen, Kefei, Lu, Meiqin, ..., Ma, Wujun. 2021. "Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations." International Journal of Molecular Sciences. 22 (21). https://doi.org/10.3390/ijms222111934
Optimisation of Sporosori Purification and Protein Extraction Techniques for the Biotrophic Protozoan Plant Pathogen Spongospora subterranea
Balotf, Sadegh, Wilson, R., Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2020. "Optimisation of Sporosori Purification and Protein Extraction Techniques for the Biotrophic Protozoan Plant Pathogen Spongospora subterranea." Molecules. 25 (14). https://doi.org/10.3390/molecules25143109
Associations of NAM-A1 alleles with the onset of senescence and nitrogen use efficiency under Western Australian conditions
Alhabbar, Zaid, Islam, Shahidul, Yang, Rongchang, Diepeveen, Dean, Anwar, Masood, Balotf, Sadegh, Sultana, Nigarin, Maddern, Rowan, She, Maoyun, Zhang, Jingjuan, Ma, Wujun and Juhasz, Angela. 2018. "Associations of NAM-A1 alleles with the onset of senescence and nitrogen use efficiency under Western Australian conditions." Euphytica: international journal on plant breeding. 214 (10). https://doi.org/10.1007/s10681-018-2266-4
How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels
Balotf, Sadegh, Islam, Shahidul, Kavoosi, Gholamreza, Kholdebarin, Bahman, Juhasz, Angela and Ma, Wujun. 2018. "How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels." PLoS One. 13 (1). https://doi.org/10.1371/journal.pone.0190269
Differential Expression of NADH Oxidase, Superoxide Dismutase, and Catalase in Wheat Seedling in Response to Zataria multiflora Essential Oil Incorporated into Polyvinyl Alcohol Dispersion
Bordbar, Z., Kavoosi, G., Balotf, S. and Nassiri, S. M.. 2017. "Differential Expression of NADH Oxidase, Superoxide Dismutase, and Catalase in Wheat Seedling in Response to Zataria multiflora Essential Oil Incorporated into Polyvinyl Alcohol Dispersion." Journal of Agricultural Science and Technology . 19 (1), pp. 145-155.
Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings
Balotf, Sadegh, Kavoosi, Gholamreza and Kholdebarin, Bahman. 2016. "Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings." Biotechnology and Applied Biochemistry. 63 (2), pp. 220-229. https://doi.org/10.1002/bab.1362
Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply
Kavoosi, Gholamreza, Balotf, Sadegh, Eshghi, Homeira and Hasani, Hasan. 2014. "Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply." Molecular Biology Research Communications. 3 (2), pp. 75-84. https://doi.org/10.22099/MBRC.2014.1960
Differential expression of nitrate reductase in response to potassium and sodium nitrate: realtime PCR analysis
Balotf, Sadegh, Niazi, Ali, Kavoosi, Gholamreza and Ramezani, Amin. 2012. "Differential expression of nitrate reductase in response to potassium and sodium nitrate: realtime PCR analysis." Australian Journal of Crop Science.
Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium nitrate
Balotf, S and Kavoosi, G. 2011. "Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium nitrate." African Journal of Biotechnology. 10 (78), pp. 17973-17980. https://doi.org/10.5897/AJB11.1562