Investigating the Potential Involvement of Glutathione S-Transferases in Defence Against Powdery Scab in Potato

Article


Balotf, S., Wilson, R. and Wilson, C.R.. 2025. "Investigating the Potential Involvement of Glutathione S-Transferases in Defence Against Powdery Scab in Potato." Journal of Fungi. 11 (9). https://doi.org/10.3390/jof11090654
Article Title

Investigating the Potential Involvement of Glutathione S-Transferases in Defence Against Powdery Scab in Potato

ERA Journal ID213247
Article CategoryArticle
AuthorsBalotf, S., Wilson, R. and Wilson, C.R.
Journal TitleJournal of Fungi
Journal Citation11 (9)
Article Number654
Number of Pages11
Year2025
PublisherMDPI AG
ISSN2309-608X
Digital Object Identifier (DOI)https://doi.org/10.3390/jof11090654
Web Address (URL)https://www.mdpi.com/2309-608X/11/9/654
Abstract

Glutathione S-transferases (GSTs) are key enzymes in plant defences involved in detoxification, redox regulation, and the modulation of secondary metabolism, playing essential roles in the response to pathogen infections. Despite prior genome-wide predictions of GSTs in potato, little is known about their specific roles in defending against Spongospora subterranea. This study re-analyses our previously generated transcriptomics and proteomics datasets to explore the role of GSTs in two contrasting potato cultivars, ‘Iwa’ (susceptible) and ‘Gladiator’ (resistant), after inoculation with S. subterranea. A total of 69 and 41 GSTs were identified in the transcriptomics and proteomics data, respectively. The majority of these GSTs were upregulated in the resistant cultivar but not in the susceptible cultivar. The upregulation of GSTs in ‘Gladiator’ suggests a more efficient antioxidant and detoxification response following S. subterranea infection. Chromosomal mapping revealed a high number of GSTs on chromosome 9, suggesting a hotspot for GSTs in the potato genome. This research provides direct evidence of the potential involvement of GSTs in resistance to S. subterranea, offering insights into potential targets for breeding resistant potato cultivars.

Keywordsglutathione S-transferases; potato; Spongospora subterranea; transcriptomics; proteomics
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020300409. Crop and pasture protection (incl. pests, diseases and weeds)
Byline AffiliationsCentre for Crop Health (Research)
University of Tasmania
Permalink -

https://research.usq.edu.au/item/100564/investigating-the-potential-involvement-of-glutathione-s-transferases-in-defence-against-powdery-scab-in-potato

  • 1
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Plant-pathogen interactions: making the case for multi-omics analysis of complex pathosystems
Balotf, S., Wilson, R., Hemmati, R., Eshaghi, M., Wilson, C.R. and Mur, L.A.J.. 2025. "Plant-pathogen interactions: making the case for multi-omics analysis of complex pathosystems." Stress Biology. 5. https://doi.org/10.1007/s44154-025-00260-7
Fabaceous and Cucurbitaceous Hosts Are Infected With Distinct Populations of the Powdery Mildew Species Podosphaera xanthii
Kelly, Lisa A., Balotf, Sadegh, Vaghefi, Niloofar and Kiss, Levente. 2025. "Fabaceous and Cucurbitaceous Hosts Are Infected With Distinct Populations of the Powdery Mildew Species Podosphaera xanthii." Plant Pathology. 74 (8), pp. 2219-2448. https://doi.org/10.1111/ppa.70028
Unveiling Genetic Resistance to Crown Rot in Watkins Wheat Landrace Diversity Panel
Garg, Bharat, Rubayet, Md. Tanbir, Muthusamy, Karthikeyan, Subramaniam, Geethanjali, McDonald, Stephen, Balotf, Sadegh, Gardiner, Donald, Percy, Cassy and Periyannan, Sambasivam. 2024. "Unveiling Genetic Resistance to Crown Rot in Watkins Wheat Landrace Diversity Panel." 12th Australasian Soilborne Diseases Symposium (ASDS 2024). Kingscliff, Australia 26 - 30 Aug 2024 Australia.
Transcriptomics is essential but not sufficient to unravel complex plant–pathogen interactions
Balotf, Sadegh, Wilson, Richard and Wilson, Calum. 2024. "Transcriptomics is essential but not sufficient to unravel complex plant–pathogen interactions." Plant Cell Reports. 43 (7). https://doi.org/10.1007/s00299-024-03248-1
Enzymatic Investigation of Spongospora subterranea Zoospore Attachment to Roots of Potato Cultivars Resistant or Susceptible to Powdery Scab Disease
Yu, Xian, Wilson, Wilson, Eyles, Eyles, Balotf, Sadegh., Tegg, Robert Stephen and Wilson, Calum Rae. 2023. "Enzymatic Investigation of Spongospora subterranea Zoospore Attachment to Roots of Potato Cultivars Resistant or Susceptible to Powdery Scab Disease." Proteomes. 11 (1). https://doi.org/10.3390/proteomes11010007
Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant-Pathogen Interactions
Balotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2022. "Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant-Pathogen Interactions." Proteomes. 10 (1). https://doi.org/10.3390/proteomes10010005
Non-escaping frost tolerant QTL linked genetic loci at reproductive stage in six wheat DH populations
Zhang, Jingjuan, Islam, Md Shahidul, Zhao, Yun, Anwar, Masood, Alhabbar, Zaid, She, Maoyun, Yang, Rongchang, Juhasz, Angela, Tang, Guixiang, Chen, Jiansheng, Liu, Hang, Jiang, Yanjie, Zhai, Shengnan, Hu, Xin, Rong, Junkang, Zhang, Yingquan, Qin, Yebo, Liu, Qier, Yu, Zitong, ..., Ma, Wujun. 2022. "Non-escaping frost tolerant QTL linked genetic loci at reproductive stage in six wheat DH populations." The Crop Journal. 10 (1), pp. 147-165. https://doi.org/10.1016/j.cj.2021.02.015
Comparative Proteomic Analysis of Potato Roots from Resistant and Susceptible Cultivars to Spongospora subterranea Zoospore Root Attachment In Vitro
Yu, Xian, Wilson, Richard, Balotf, Sadegh, Tegg, Robert S., Eyles, Alieta and Wilson, Calum R.. 2022. "Comparative Proteomic Analysis of Potato Roots from Resistant and Susceptible Cultivars to Spongospora subterranea Zoospore Root Attachment In Vitro." Molecules. 27 (18). https://doi.org/10.3390/molecules27186024
Large-Scale Protein and Phosphoprotein Profiling to Explore Potato Resistance Mechanisms to Spongospora subterranea Infection
Balotf, Sadegh, Wilson, Calum R., Tegg, Robert S., Nichols, David S. and Wilson, Richard. 2022. "Large-Scale Protein and Phosphoprotein Profiling to Explore Potato Resistance Mechanisms to Spongospora subterranea Infection." Frontiers in Plant Science. 13. https://doi.org/10.3389/fpls.2022.872901
Multi-omics reveals mechanisms of resistance to potato root infection by Spongospora subterranea
Balotf, Sadegh, Wilson, Richard, Nichols, David S., Tegg, Robert S. and Wilson, Calum R.. 2022. "Multi-omics reveals mechanisms of resistance to potato root infection by Spongospora subterranea." Scientific Reports. 12 (1). https://doi.org/10.1038/s41598-022-14606-y
Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea
Balotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, C.R.. 2021. "Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea." Environmental Microbiology Reports. 13 (4), pp. 521-532. https://doi.org/10.1111/1758-2229.12955
In Planta Transcriptome and Proteome Profiles of Spongospora subterranea in Resistant and Susceptible Host Environments Illuminates Regulatory Principles Underlying Host-Pathogen Interaction
Balotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2021. "In Planta Transcriptome and Proteome Profiles of Spongospora subterranea in Resistant and Susceptible Host Environments Illuminates Regulatory Principles Underlying Host-Pathogen Interaction." Biology. 10 (9). https://doi.org/10.3390/biology10090840
Spore Germination of the Obligate Biotroph Spongospora subterranea: Transcriptome Analysis Reveals Germination Associated Genes
Balotf, Sadegh, Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2021. "Spore Germination of the Obligate Biotroph Spongospora subterranea: Transcriptome Analysis Reveals Germination Associated Genes." Frontiers in Microbiology. 12. https://doi.org/10.3389/fmicb.2021.691877
Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations
Zhang, Jingjuan, She, Maoyun, Yang, Rongchang, Jiang, Yanjie, Qin, Yebo, Zhai, Shengnan, Balotf, Sadegh, Zhao, Yun, Jiang, Yanjie, Alhabbar, Zaid, Qin, Yebo, Chen, Jiansheng, Zhai, Shengnan, Liu, Qier, Zheng, Ting, Yang, Fan, Rong, Junkang, Chen, Kefei, Lu, Meiqin, ..., Ma, Wujun. 2021. "Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations." International Journal of Molecular Sciences. 22 (21). https://doi.org/10.3390/ijms222111934
Optimisation of Sporosori Purification and Protein Extraction Techniques for the Biotrophic Protozoan Plant Pathogen Spongospora subterranea
Balotf, Sadegh, Wilson, R., Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2020. "Optimisation of Sporosori Purification and Protein Extraction Techniques for the Biotrophic Protozoan Plant Pathogen Spongospora subterranea." Molecules. 25 (14). https://doi.org/10.3390/molecules25143109
Associations of NAM-A1 alleles with the onset of senescence and nitrogen use efficiency under Western Australian conditions
Alhabbar, Zaid, Islam, Shahidul, Yang, Rongchang, Diepeveen, Dean, Anwar, Masood, Balotf, Sadegh, Sultana, Nigarin, Maddern, Rowan, She, Maoyun, Zhang, Jingjuan, Ma, Wujun and Juhasz, Angela. 2018. "Associations of NAM-A1 alleles with the onset of senescence and nitrogen use efficiency under Western Australian conditions." Euphytica: international journal on plant breeding. 214 (10). https://doi.org/10.1007/s10681-018-2266-4
How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels
Balotf, Sadegh, Islam, Shahidul, Kavoosi, Gholamreza, Kholdebarin, Bahman, Juhasz, Angela and Ma, Wujun. 2018. "How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels." PLoS One. 13 (1). https://doi.org/10.1371/journal.pone.0190269
Differential Expression of NADH Oxidase, Superoxide Dismutase, and Catalase in Wheat Seedling in Response to Zataria multiflora Essential Oil Incorporated into Polyvinyl Alcohol Dispersion
Bordbar, Z., Kavoosi, G., Balotf, S. and Nassiri, S. M.. 2017. "Differential Expression of NADH Oxidase, Superoxide Dismutase, and Catalase in Wheat Seedling in Response to Zataria multiflora Essential Oil Incorporated into Polyvinyl Alcohol Dispersion." Journal of Agricultural Science and Technology . 19 (1), pp. 145-155.
Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings
Balotf, Sadegh, Kavoosi, Gholamreza and Kholdebarin, Bahman. 2016. "Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings." Biotechnology and Applied Biochemistry. 63 (2), pp. 220-229. https://doi.org/10.1002/bab.1362
Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply
Kavoosi, Gholamreza, Balotf, Sadegh, Eshghi, Homeira and Hasani, Hasan. 2014. "Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply." Molecular Biology Research Communications. 3 (2), pp. 75-84. https://doi.org/10.22099/MBRC.2014.1960
Differential expression of nitrate reductase in response to potassium and sodium nitrate: realtime PCR analysis
Balotf, Sadegh, Niazi, Ali, Kavoosi, Gholamreza and Ramezani, Amin. 2012. "Differential expression of nitrate reductase in response to potassium and sodium nitrate: realtime PCR analysis." Australian Journal of Crop Science.
Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium nitrate
Balotf, S and Kavoosi, G. 2011. "Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium nitrate." African Journal of Biotechnology. 10 (78), pp. 17973-17980. https://doi.org/10.5897/AJB11.1562