Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium nitrate

Article


Balotf, S and Kavoosi, G. 2011. "Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium nitrate." African Journal of Biotechnology. 10 (78), pp. 17973-17980. https://doi.org/10.5897/AJB11.1562
Article Title

Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium nitrate

ERA Journal ID3387
Article CategoryArticle
AuthorsBalotf, S and Kavoosi, G
Journal TitleAfrican Journal of Biotechnology
Journal Citation10 (78), pp. 17973-17980
Number of Pages8
Year2011
PublisherAcademic Journals
Place of PublicationNigeria
ISSN1684-5315
Digital Object Identifier (DOI)https://doi.org/10.5897/AJB11.1562
Web Address (URL)https://www.ajol.info/index.php/ajb/article/view/98527
Abstract

For most of the cultivated crops, nitrate is the major source of nitrogen. Most steps in the nitrate assimilatory pathway are nitrate inducible. In this study, Cucurbita pepo were grown in washed sand per pot at three potassium and sodium nitrate supplies (25, 50 and 100 mM) to investigate the effects of nitrate salts supply on nitrate accumulation, amino acid biosynthesis, total protein production, nitrate reductase activity and carbohydrate biosynthesis in the roots and leaves of the plants. The results indicate that both sodium and potassium nitrate supplementation had stimulatory effects on all of the mentioned factors in a dose dependent manner. In low concentration ranges (25 and 50 mM), nitrate stimulated nitrate assimilation pathway, but at 100 mM nitrate, this pathway was suppressed. However, potassium nitrate supplementation increased all of these parameters more than sodium nitrate supplementation. Both sodium and potassium nitrate, as inducers, had significant effects on both the nitrate assimilation and metabolism in low concentrations. However, the effects of potassium nitrate were higher than sodium nitrate, which was due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism. In conclusion, potassium nitrate has better effect on the nitrate assimilatory pathway and protein and carbohydrate metabolisms.

KeywordsNitrate salts supply; nitrate accumulation; nitrate reductase activity; amino acid; protein; carbohydrate; potassium nitrate; sodium nitrate
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 20203001. Agricultural biotechnology
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions, but may be accessed online. Please see the link in the URL field.

Byline AffiliationsShiraz University, Iran
Permalink -

https://research.usq.edu.au/item/z746w/differential-nitrate-accumulation-nitrate-reduction-nitrate-reductase-activity-protein-production-and-carbohydrate-biosynthesis-in-response-to-potassium-and-sodium-nitrate

  • 29
    total views
  • 12
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Unveiling Genetic Resistance to Crown Rot in Watkins Wheat Landrace Diversity Panel
Garg, Bharat, Rubayet, Md. Tanbir, Muthusamy, Karthikeyan, Subramaniam, Geethanjali, McDonald, Stephen, Balotf, Sadegh, Gardiner, Donald, Percy, Cassy and Periyannan, Sambasivam. 2024. "Unveiling Genetic Resistance to Crown Rot in Watkins Wheat Landrace Diversity Panel." 12th Australasian Soilborne Diseases Symposium (ASDS 2024). Kingscliff, Australia 26 - 30 Aug 2024 Australia.
Transcriptomics is essential but not sufficient to unravel complex plant–pathogen interactions
Balotf, Sadegh, Wilson, Richard and Wilson, Calum. 2024. "Transcriptomics is essential but not sufficient to unravel complex plant–pathogen interactions." Plant Cell Reports. 43 (7). https://doi.org/10.1007/s00299-024-03248-1
Enzymatic Investigation of Spongospora subterranea Zoospore Attachment to Roots of Potato Cultivars Resistant or Susceptible to Powdery Scab Disease
Yu, Xian, Wilson, Wilson, Eyles, Eyles, Balotf, Sadegh., Tegg, Robert Stephen and Wilson, Calum Rae. 2023. "Enzymatic Investigation of Spongospora subterranea Zoospore Attachment to Roots of Potato Cultivars Resistant or Susceptible to Powdery Scab Disease." Proteomes. 11 (1). https://doi.org/10.3390/proteomes11010007
Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant-Pathogen Interactions
Balotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2022. "Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant-Pathogen Interactions." Proteomes. 10 (1). https://doi.org/10.3390/proteomes10010005
Non-escaping frost tolerant QTL linked genetic loci at reproductive stage in six wheat DH populations
Zhang, Jingjuan, Islam, Md Shahidul, Zhao, Yun, Anwar, Masood, Alhabbar, Zaid, She, Maoyun, Yang, Rongchang, Juhasz, Angela, Tang, Guixiang, Chen, Jiansheng, Liu, Hang, Jiang, Yanjie, Zhai, Shengnan, Hu, Xin, Rong, Junkang, Zhang, Yingquan, Qin, Yebo, Liu, Qier, Yu, Zitong, ..., Ma, Wujun. 2022. "Non-escaping frost tolerant QTL linked genetic loci at reproductive stage in six wheat DH populations." The Crop Journal. 10 (1), pp. 147-165. https://doi.org/10.1016/j.cj.2021.02.015
Comparative Proteomic Analysis of Potato Roots from Resistant and Susceptible Cultivars to Spongospora subterranea Zoospore Root Attachment In Vitro
Yu, Xian, Wilson, Richard, Balotf, Sadegh, Tegg, Robert S., Eyles, Alieta and Wilson, Calum R.. 2022. "Comparative Proteomic Analysis of Potato Roots from Resistant and Susceptible Cultivars to Spongospora subterranea Zoospore Root Attachment In Vitro." Molecules. 27 (18). https://doi.org/10.3390/molecules27186024
Large-Scale Protein and Phosphoprotein Profiling to Explore Potato Resistance Mechanisms to Spongospora subterranea Infection
Balotf, Sadegh, Wilson, Calum R., Tegg, Robert S., Nichols, David S. and Wilson, Richard. 2022. "Large-Scale Protein and Phosphoprotein Profiling to Explore Potato Resistance Mechanisms to Spongospora subterranea Infection." Frontiers in Plant Science. 13. https://doi.org/10.3389/fpls.2022.872901
Multi-omics reveals mechanisms of resistance to potato root infection by Spongospora subterranea
Balotf, Sadegh, Wilson, Richard, Nichols, David S., Tegg, Robert S. and Wilson, Calum R.. 2022. "Multi-omics reveals mechanisms of resistance to potato root infection by Spongospora subterranea." Scientific Reports. 12 (1). https://doi.org/10.1038/s41598-022-14606-y
Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea
Balotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, C.R.. 2021. "Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea." Environmental Microbiology Reports. 13 (4), pp. 521-532. https://doi.org/10.1111/1758-2229.12955
In Planta Transcriptome and Proteome Profiles of Spongospora subterranea in Resistant and Susceptible Host Environments Illuminates Regulatory Principles Underlying Host-Pathogen Interaction
Balotf, Sadegh, Wilson, Richard, Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2021. "In Planta Transcriptome and Proteome Profiles of Spongospora subterranea in Resistant and Susceptible Host Environments Illuminates Regulatory Principles Underlying Host-Pathogen Interaction." Biology. 10 (9). https://doi.org/10.3390/biology10090840
Spore Germination of the Obligate Biotroph Spongospora subterranea: Transcriptome Analysis Reveals Germination Associated Genes
Balotf, Sadegh, Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2021. "Spore Germination of the Obligate Biotroph Spongospora subterranea: Transcriptome Analysis Reveals Germination Associated Genes." Frontiers in Microbiology. 12. https://doi.org/10.3389/fmicb.2021.691877
Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations
Zhang, Jingjuan, She, Maoyun, Yang, Rongchang, Jiang, Yanjie, Qin, Yebo, Zhai, Shengnan, Balotf, Sadegh, Zhao, Yun, Jiang, Yanjie, Alhabbar, Zaid, Qin, Yebo, Chen, Jiansheng, Zhai, Shengnan, Liu, Qier, Zheng, Ting, Yang, Fan, Rong, Junkang, Chen, Kefei, Lu, Meiqin, ..., Ma, Wujun. 2021. "Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations." International Journal of Molecular Sciences. 22 (21). https://doi.org/10.3390/ijms222111934
Optimisation of Sporosori Purification and Protein Extraction Techniques for the Biotrophic Protozoan Plant Pathogen Spongospora subterranea
Balotf, Sadegh, Wilson, R., Tegg, Robert S., Nichols, David S. and Wilson, Calum R.. 2020. "Optimisation of Sporosori Purification and Protein Extraction Techniques for the Biotrophic Protozoan Plant Pathogen Spongospora subterranea." Molecules. 25 (14). https://doi.org/10.3390/molecules25143109
Associations of NAM-A1 alleles with the onset of senescence and nitrogen use efficiency under Western Australian conditions
Alhabbar, Zaid, Islam, Shahidul, Yang, Rongchang, Diepeveen, Dean, Anwar, Masood, Balotf, Sadegh, Sultana, Nigarin, Maddern, Rowan, She, Maoyun, Zhang, Jingjuan, Ma, Wujun and Juhasz, Angela. 2018. "Associations of NAM-A1 alleles with the onset of senescence and nitrogen use efficiency under Western Australian conditions." Euphytica: international journal on plant breeding. 214 (10). https://doi.org/10.1007/s10681-018-2266-4
How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels
Balotf, Sadegh, Islam, Shahidul, Kavoosi, Gholamreza, Kholdebarin, Bahman, Juhasz, Angela and Ma, Wujun. 2018. "How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels." PLoS One. 13 (1). https://doi.org/10.1371/journal.pone.0190269
Differential Expression of NADH Oxidase, Superoxide Dismutase, and Catalase in Wheat Seedling in Response to Zataria multiflora Essential Oil Incorporated into Polyvinyl Alcohol Dispersion
Bordbar, Z., Kavoosi, G., Balotf, S. and Nassiri, S. M.. 2017. "Differential Expression of NADH Oxidase, Superoxide Dismutase, and Catalase in Wheat Seedling in Response to Zataria multiflora Essential Oil Incorporated into Polyvinyl Alcohol Dispersion." Journal of Agricultural Science and Technology . 19 (1), pp. 145-155.
Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings
Balotf, Sadegh, Kavoosi, Gholamreza and Kholdebarin, Bahman. 2016. "Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings." Biotechnology and Applied Biochemistry. 63 (2), pp. 220-229. https://doi.org/10.1002/bab.1362
Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply
Kavoosi, Gholamreza, Balotf, Sadegh, Eshghi, Homeira and Hasani, Hasan. 2014. "Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply." Molecular Biology Research Communications. 3 (2), pp. 75-84. https://doi.org/10.22099/MBRC.2014.1960
Differential expression of nitrate reductase in response to potassium and sodium nitrate: realtime PCR analysis
Balotf, Sadegh, Niazi, Ali, Kavoosi, Gholamreza and Ramezani, Amin. 2012. "Differential expression of nitrate reductase in response to potassium and sodium nitrate: realtime PCR analysis." Australian Journal of Crop Science.