Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells
Article
Article Title | Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells |
---|---|
ERA Journal ID | 1397 |
Article Category | Article |
Authors | Tiong, Vincent Tiing (Author), Pham, Ngoc Duy (Author), Wang, Teng (Author), Zhu, Tianxiang (Author), Zhao, Xinluo (Author), Zhang, Yaohong (Author), Shen, Qing (Author), Bell, John (Author), Hu, Linhua (Author), Dai, Songyuan (Author) and Wang, Hongxia (Author) |
Journal Title | Advanced Functional Materials |
Journal Citation | 28 (10) |
Article Number | 1705545 |
Number of Pages | 14 |
Year | 2018 |
Publisher | John Wiley & Sons |
Place of Publication | Germany |
ISSN | 1616-301X |
1616-3028 | |
Digital Object Identifier (DOI) | https://doi.org/10.1002/adfm.201705545 |
Web Address (URL) | https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201705545 |
Abstract | Organic–inorganic lead halide perovskites have shown great future for application in solar cells owing to their exceptional optical and electronic properties. To achieve high‐performance perovskite solar cells, a perovskite light absorbing layer with large grains is desirable in order to minimize grain boundaries and recombination during the operation of the device. Herein, a simple yet efficient approach is developed to synthesize perovskite films consisting of monolithic‐like grains with micrometer size through in situ deposition of octadecylamine functionalized single‐walled carbon nanotubes (ODA‐SWCNTs) onto the surface of the perovskite layer. The ODA‐SWCNTs form a capping layer that controls the evaporation rate of organic solvents in the perovskite film during the postthermal treatment. This favorable morphology in turn dramatically enhances the short‐circuit current density of the perovskite solar cells and almost completely eliminates the hysteresis. A maximum power conversion efficiency of 16.1% is achieved with an ODA‐SWCNT incorporated planar solar cell using (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3 as light absorber. Furthermore, the perovskite solar cells with ODA‐SWCNT demonstrate extraordinary stability with performance retention of 80% after 45 d stability testing under high humidity (60–90%) environment. This work opens up a new avenue for morphology manipulation of perovskite films and enhances the device stability using carbon material. |
Keywords | grain growth; hysteresis; perovskite solar cells; single-walled carbon nanotubes |
ANZSRC Field of Research 2020 | 349999. Other chemical sciences not elsewhere classified |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Queensland University of Technology |
Shanghai University, China | |
University of Electro-Communications, Japan | |
Chinese Academy of Sciences, China | |
North China Electric Power University, China | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q5x47/octadecylamine-functionalized-single-walled-carbon-nanotubes-for-facilitating-the-formation-of-a-monolithic-perovskite-layer-and-stable-solar-cells
138
total views7
total downloads3
views this month0
downloads this month