Needleless electrospinning of uniform nanofibers using spiral coil spinnerets

Article


Wang, Xin, Niu, Haitao, Wang, Xungai and Lin, Tong. 2012. "Needleless electrospinning of uniform nanofibers using spiral coil spinnerets." Journal of Nanomaterials. 2012, pp. 1-9. https://doi.org/10.1155/2012/785920
Article Title

Needleless electrospinning of uniform nanofibers using spiral coil spinnerets

ERA Journal ID201083
Article CategoryArticle
AuthorsWang, Xin (Author), Niu, Haitao (Author), Wang, Xungai (Author) and Lin, Tong (Author)
Journal TitleJournal of Nanomaterials
Journal Citation2012, pp. 1-9
Number of Pages9
Year2012
Place of PublicationNew York, NY. United States
ISSN1687-4110
1687-4129
Digital Object Identifier (DOI)https://doi.org/10.1155/2012/785920
Abstract

Polyvinyl alcohol nanofibers were prepared by a needleless electrospinning technique using a rotating spiral wire coil as spinneret. The influences of coil dimension (e.g., coil length, coil diameter, spiral distance, and wire diameter) and operating parameters (e.g., applied voltage and spinning distance) on electrospinning process, nanofiber diameter, and fiber productivity were examined. It was found that the coil dimension had a considerable influence on the nanofiber production rate, but minor effect on the fiber diameter. The fiber production rate increased with the increased coil length or coil diameter, or the reduced spiral distance or wire diameter. Higher applied voltage or shorter collecting distance also improved the fiber production rate but had little influence on the fiber diameter. Compared with the conventional needle electrospinning, the coil electrospinning produced finer fibers with a narrower diameter distribution. A finite element method was used to analyze the electric field on the coil surface and in electrospinning zone. It was revealed that the high electric field intensity was concentrated on the coil surface, and the intensity was highly dependent on the coil dimension, which can be used to explain the electrospinning performances of coils. In addition, PAN nanofibers were prepared using the same needleless electrospinning technique to verify the improvement in productivity.

Keywordsapplied voltages; coil dimensions; diameter distributions; electrospinning process; electrospinning techniques; fiber diameters; fiber production; fiber productivity; high electric fields; operating parameters; production rates; spinning distance; spiral coils; wire diameter; wire-coils
ANZSRC Field of Research 2020340306. Polymerisation mechanisms
401413. Textile technology
401805. Nanofabrication, growth and self assembly
Public Notes

Copyright © 2012 Xin Wang et al. This is an open access article distributed under the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Byline AffiliationsWuhan University of Science and Engineering, China
Deakin University
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q279z/needleless-electrospinning-of-uniform-nanofibers-using-spiral-coil-spinnerets

Download files


Published Version
Wang_Niu_Wang_Lin_JN_v2012_PV.pdf
License: CC BY 4.0
File access level: Anyone

  • 1730
    total views
  • 183
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Enhanced Simple Question Answering with Contrastive Learning
Wang, Xin, Yang, Lan, He, Honglian, Fang, Yu, Zhan, Huayi and Zhang, Ji. 2022. "Enhanced Simple Question Answering with Contrastive Learning." 15th International Conference on Knowledge Science, Engineering and Management (KSEM 2022). Singapore 06 - 08 Aug 2022 Switzerland . Springer. https://doi.org/10.1007/978-3-031-10983-6_39
Learning relational fractals for deep knowledge graph embedding in online social networks
Zhang, Ji, Tan, Leonard, Tao, Xiaohui, Wang, Dianwei, Ying, Josh Jia-Ching and Wang, Xin. 2019. "Learning relational fractals for deep knowledge graph embedding in online social networks." Cheng, Reynold, mamoulis, Nikos, Sun, Yizhou and Huang, Xin (ed.) 20th International Conference on Web Information Systems Engineering (WISE 2019): Workshop, Demo and Tutorial. Hong Kong, China 19 - 22 Jan 2020 Singapore. Springer. https://doi.org/10.1007/978-3-030-34223-4_42
Extending Graph Pattern Matching with Regular Expressions
Wang, Xin, Wang, Yang, Xu, Yang, Zhang, Ji and Zhong, Xueyan. 2020. "Extending Graph Pattern Matching with Regular Expressions." Hartmann, Sven, Kung, Josef, Kotsis, Gabriele, Tjoa, A Min and Khalil, Ismail (ed.) 31st International Conference on Database and Expert Systems Applications (DEXA 2020). Bratislava, Slovakia 14 - 17 Sep 2020 Cham, Switzerland. https://doi.org/10.1007/978-3-030-59051-2_8
Bounded Pattern Matching Using Views
Wang, Xin, Wang, Yang, Zhang, Ji and Zhu, Yan. 2020. "Bounded Pattern Matching Using Views." Hartmann, Sven, Kung, Josef, Kotsis, Gabriele, Tjoa, A Min and Khalil, Ismail (ed.) 31st International Conference on Database and Expert Systems Applications (DEXA 2020). Bratislava, Slovakia 14 - 17 Sep 2020 Cham, Switzerland. https://doi.org/10.1007/978-3-030-59003-1_19
Predicting Workplace Injuries Using Machine Learning Algorithms
Sukumar, Divya, Zhang, Ji, Tao, Xiaohui, Wang, Xin and Zhang, Wenbin. 2020. "Predicting Workplace Injuries Using Machine Learning Algorithms." Webb, Geoff, Zhang, Zhongfei, Tseng, Vincent S., Williams, Graham, Vlachos, Michalis and Cao, Longbing (ed.) 7th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2020). Sydney, Australia 06 - 09 Oct 2020 Piscataway, United States. https://doi.org/10.1109/DSAA49011.2020.00104
Lightweight, Superelastic Yet Thermoconductive Boron Nitride Nanocomposite Aerogel for Thermal Energy Regulation
Wang, Jieming, Liu, Dan, Li, Quanxiang, Chen, Cheng, Chen, Zhiqiang, Song, Pingan, Hao, Jian, Li, Yingwei, Fakhrhoseini, Sobhan, Naebe, Minoo, Wang, Xungai and Lei, Weiwei. 2019. "Lightweight, Superelastic Yet Thermoconductive Boron Nitride Nanocomposite Aerogel for Thermal Energy Regulation." ACS Nano. 13 (7), pp. 7860-7870. https://doi.org/10.1021/acsnano.9b02182
Use of airflow to improve the nanofibrous structure and quality of nanofibers from needleless electrospinning
Wang, Xin, Lin, Tong and Wang, Xungai. 2015. "Use of airflow to improve the nanofibrous structure and quality of nanofibers from needleless electrospinning." Journal of Industrial Textiles. 45 (2), pp. 310-320. https://doi.org/10.1177/1528083714537100
Quantitative thickness prediction of tectonically deformed coal using Extreme Learning Machine and Principal Component Analysis: a case study
Wang, Xin, Li, Yan, Chen, Tongjun, Yan, Qiuyan and Ma, Li. 2017. "Quantitative thickness prediction of tectonically deformed coal using Extreme Learning Machine and Principal Component Analysis: a case study." Computers and Geosciences. 101, pp. 38-47. https://doi.org/10.1016/j.cageo.2017.02.001
A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles
Li, Wenbin, Xu, Weilin, Wang, Hao and Wang, Xin. 2016. "A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles." Journal of Thermal Biology. 55, pp. 14-19. https://doi.org/10.1016/j.jtherbio.2015.11.005
Effect of surface modifications on the thermal and moisture behavior of wool fabric
Wang, Xin, Zhao, Yuan, Li, Wenbin and Wang, Hao. 2015. "Effect of surface modifications on the thermal and moisture behavior of wool fabric." Applied Surface Science. 342, pp. 101-105. https://doi.org/10.1016/j.apsusc.2015.03.027
Study on the surface temperature of fabric in the process of dynamic moisture liberation
Wang, Xin, Li, Wenbin, Xu, Weilin and Wang, Hao. 2014. "Study on the surface temperature of fabric in the process of dynamic moisture liberation." Fibers and Polymers. 15 (11), pp. 2437-2440. https://doi.org/10.1007/s12221-014-2437-4
Experimental investigation on the effect of singeing on cotton yarn properties (+Erratum)
Xia, Zhigang, Wang, Xin, Ye, Wenxiang, Xu, Weilin, Zhang, Jianxiang and Zhao, Haito. 2009. "Experimental investigation on the effect of singeing on cotton yarn properties (+Erratum)." Textile Research Journal. 79 (17), pp. 1610-1615. https://doi.org/10.1177/0040517508099389
Temperature responsive hydrogel nanofibres from POSS-containing PNiPAAm
Wang, Jing and Lin, Tong. 2011. "Temperature responsive hydrogel nanofibres from POSS-containing PNiPAAm." Ali, N. and Polini, R. (ed.) 4th International Conference on Surfaces, Coatings and Nanostructured Materials (NanoSMat 2009). Rome, Italy 19 - 22 Oct 2009 Stevenson Ranch, CA. United States.
Fast responsive and morphologically robust thermo-responsive hydrogel nanofibres from poly(N-isopropylacrylamide) and POSS crosslinker
Wang, Jing, Sutti, Alessandra, Wang, Xungai and Lin, Tong. 2011. "Fast responsive and morphologically robust thermo-responsive hydrogel nanofibres from poly(N-isopropylacrylamide) and POSS crosslinker." Soft Matter. 7 (9), pp. 4364-4369. https://doi.org/10.1039/c1sm00010a
Thermo-responsive PNIPAM Hydrogel nanofibres photocrosslinked by Azido-POSS
Wang, Jing, Sutti, Alessandra, Lin, Tong and Wang, Xungai. 2013. "Thermo-responsive PNIPAM Hydrogel nanofibres photocrosslinked by Azido-POSS." Wang, Xungai (ed.) Fiber Society Spring 2013 Technical Conference (FS 2013): Advancing Scientific Knowledge Pertaining to Fibers and Fibrous Materials. Geelong, Australia 22 - 24 May 2013 Raleigh, NC. United States.
Evaluation of cottonised hemp fibre produced using a new catalytic degumming system
Hurren, Christopher, Wang, Jing, Wood, Raymon, Li, Qing, Bibeau, Louis and Wang, Xungai. 2013. "Evaluation of cottonised hemp fibre produced using a new catalytic degumming system." Fangueiro, Raul (ed.) 1st International Conference on Natural Fibers (ICNF 2013): Sustainable Materials for Advanced Applications. Guimaraes, Portugal 09 - 11 Jun 2013 Guimaraes, Portugal . https://doi.org/10.1155/2013/
Thermo-responsive PNIPAM nanofibres crosslinked by OpePOSS
Wang, Jing, Hurren, Christopher, Sutti, Alessandra, Lin, Tong and Wang, Xungai. 2013. "Thermo-responsive PNIPAM nanofibres crosslinked by OpePOSS." Epaarachchi, Jayantha A., Lau, Alan Kin-tak and Leng, Jinsong (ed.) 4th International Conference on Smart Materials and Nanotechnology in Engineering (SMN 2013). Gold Coast, Australia 10 - 12 Jul 2013 Bellingham, WA. United States. https://doi.org/10.1117/12.2021556
A new way to nanostructure hydrogels: electrospun thermo-responsive islands-in-the-sea nanofibres
Wang, Jing, Sutti, Alessandra, Wang, Xungai and Lin, Tong. 2012. "A new way to nanostructure hydrogels: electrospun thermo-responsive islands-in-the-sea nanofibres ." 5th Materials Research Society Fall Meeting (MRS 2011). Boston, United States 28 Nov - 02 Dec 2011 Warrendale, PA. United States. https://doi.org/10.1557/opl.2012.418
Thermo-responsive Hercosett/Poly(N-isopropylacrylamide) films: a new, fast, optically responsive coating
Wang, Jing, Sutti, Alessandra, Wang, Xungai and Lin, Tong. 2012. "Thermo-responsive Hercosett/Poly(N-isopropylacrylamide) films: a new, fast, optically responsive coating." Journal of Colloid and Interface Science. 369 (1), pp. 231-237. https://doi.org/10.1016/j.jcis.2011.11.035
Carbon nanotube reinforced rigid-rod polyimide
Naebe, Minoo, Wang, Jing, Xue, Yuhua, Wang, Xungai and Lin, Tong. 2010. "Carbon nanotube reinforced rigid-rod polyimide." Journal of Applied Polymer Science. 118 (1), pp. 359-365. https://doi.org/10.1002/app.32395
Bleaching and dyeing of superfine wool powder/polypropylene blend film
Wang, Xin, Xu, Weilin, Cui, Weigang, Li, Wenbin and Wang, Xungai. 2008. "Bleaching and dyeing of superfine wool powder/polypropylene blend film." Research Journal of Textile and Apparel. 12 (4), pp. 12-20.
Needleless electrospinning and direct electrospinning of nanofiber yarns
Lin, Tong, Niu, Haitao, Wang, Xin, Ali, Usman and Wang, Xungai. 2011. "Needleless electrospinning and direct electrospinning of nanofiber yarns." New Frontiers in Fiber Materials Science (AATCC 2011). Charleston, United States 11 - 13 Oct 2011 Research Triangle Park, NC. United States.
A study on the relationship between irregularity and hairiness of spun yarns
Xia, Zhigang, Wang, Hongshan, Wang, Xin, Ye, Wenxiang and Xu, Weilin. 2011. "A study on the relationship between irregularity and hairiness of spun yarns." Textile Research Journal. 81 (3), pp. 273-279. https://doi.org/10.1177/0040517510380112
Embeddable and locatable spinning
Xu, Weilin, Xia, Zhigang, Wang, Xin, Chen, Jun, Cui, Weigang, Ye, Wenxiang, Ding, Cailing and Wang, Xungai. 2011. "Embeddable and locatable spinning." Textile Research Journal. 81 (3), pp. 223-229. https://doi.org/10.1177/0040517510380780
Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring
Wang, Xin, Lin, Tong and Wang, Xungai. 2014. "Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring ." Fibers and Polymers. 15 (5), pp. 961-965. https://doi.org/10.1007/s12221-014-0961-x
Use of aluminum-coated interlayers to develop a cold-protective fibrous assembly
Wang, Xin and Fan, Jintu. 2014. "Use of aluminum-coated interlayers to develop a cold-protective fibrous assembly ." Journal of Applied Polymer Science. 131 (9). https://doi.org/10.1002/app.40205
Experimental investigation on the surface humidity of fabric during the process of dynamic moisture liberation
Li, Wenbin, Jiang, Peiqing, Wang, Xin, Li, Gaowen and Xu, Weilin. 2013. "Experimental investigation on the surface humidity of fabric during the process of dynamic moisture liberation." International Journal of Clothing Science and Technology. 25 (6), pp. 451-456. https://doi.org/10.1108/IJCST-05-2012-0023
Electric field analysis of spinneret design for needleless electrospinning of nanofibers
Wang, Xin, Wang, Xungai and Lin, Tong. 2012. "Electric field analysis of spinneret design for needleless electrospinning of nanofibers ." Journal of Materials Research. 27 (23), pp. 3013-3019. https://doi.org/10.1557/jmr.2012.346
Effect of repeated winding on carded ring cotton yarn properties
Xia, Zhigang, Wang, Xin, Ye, Wenxiang, Xu, Weilin and Eltahir, Hafiz A.. 2011. "Effect of repeated winding on carded ring cotton yarn properties ." Fibers and Polymers. 12 (4), pp. 534-540. https://doi.org/10.1007/s12221-011-0534-1
A study of influence of the delivery rubber roller on yarn properties
Xia, Zhigang, Wang, Xin, Huang, Juan, Wang, Yan, Ye, Wenxiang and Xu, Weilin. 2011. "A study of influence of the delivery rubber roller on yarn properties ." Textile Research Journal. 81 (14), pp. 1477-1483. https://doi.org/10.1177/0040517511399964
Fiber trapping comparison of embeddable and locatable spinning with sirofil and siro core-spinning with flute pipe air suction
Xia, Zhigang, Wang, Xin, Ye, Wenxiang, Eltahir, Hafiz A. and Xu, Weilin. 2012. "Fiber trapping comparison of embeddable and locatable spinning with sirofil and siro core-spinning with flute pipe air suction ." Textile Research Journal. 82 (12), pp. 1255-1262. https://doi.org/10.1177/0040517512439918
Effect of hydrogen peroxide treatment on the properties of wool fabric
Wang, Xin, Shen, Xiaolin and Xu, Weilin. 2012. "Effect of hydrogen peroxide treatment on the properties of wool fabric ." Applied Surface Science. 258 (24), pp. 10012-10016. https://doi.org/10.1016/j.apsusc.2012.06.065
Effect of experimental parameters on needleless electrospinning from a conical wire coil
Wang, Xin and Xu, Weilin. 2012. "Effect of experimental parameters on needleless electrospinning from a conical wire coil." Journal of Applied Polymer Science. 123 (6), pp. 3703-3709. https://doi.org/10.1002/app.35044
Needleless electrospinning of nanofibers with a conical wire coil
Wang, Xin, Niu, Haitao, Lin, Tong and Wang, Xungai. 2009. "Needleless electrospinning of nanofibers with a conical wire coil." Polymer Engineering and Science. 49 (8), pp. 1582-1586. https://doi.org/10.1002/pen.21377
Study on the electrical resistance of textiles under wet conditions
Wang, Xin, Xu, Weilin, Li, Wenbin and Cui, Weigang. 2009. "Study on the electrical resistance of textiles under wet conditions." Textile Research Journal. 79 (8), pp. 753-760. https://doi.org/10.1177/0040517508092018
Improving the hydrophilic properties of wool fabrics via corona discharge and hydrogen peroxide treatment
Wang, Xin, Cao, Genyang and Xu, Weilin. 2009. "Improving the hydrophilic properties of wool fabrics via corona discharge and hydrogen peroxide treatment ." Journal of Applied Polymer Science. 112 (4), pp. 1959-1966. https://doi.org/10.1002/app.29573
Thermoplastic film from superfine wool powder
Wang, Xin, Xu, Weilin, Li, Wenbin and Wang, Xungai. 2009. "Thermoplastic film from superfine wool powder ." Fibres and Textiles in Eastern Europe. 17 (2 (73)), pp. 82-86.
Dynamic analysis on the thermal and electrical properties of fabrics in the process of moisture absorption and liberation
Cui, Weigang, Wang, Xin, Li, Wenbin and Xu, Weilin. 2009. "Dynamic analysis on the thermal and electrical properties of fabrics in the process of moisture absorption and liberation ." International Journal of Clothing Science and Technology. 21 (5), pp. 279-285. https://doi.org/10.1108/09556220910983777
Application of corona discharge on desizing of polyvinyl alcohol on cotton fabrics
Ma, Pibo, Wang, Xin, Xu, Weilin and Cao, Genyang. 2009. "Application of corona discharge on desizing of polyvinyl alcohol on cotton fabrics ." Journal of Applied Polymer Science. 114 (5), pp. 2887-2892. https://doi.org/10.1002/app.30837
Characterization of superfine down powder
Xu, Weilin, Wang, Xin, Cui, Weigang, Peng, Xuqiang, Li, Wenbin and Liu, Xin. 2009. "Characterization of superfine down powder ." Journal of Applied Polymer Science. 111 (5), pp. 2204-2209. https://doi.org/10.1002/app.29205
Characterization of hot-pressed films from superfine wool powder
Wang, Xin, Xu, Weilin and Wang, Xungai. 2008. "Characterization of hot-pressed films from superfine wool powder ." Journal of Applied Polymer Science. 108 (5), pp. 2852-2856. https://doi.org/10.1002/app.27738
A novel method to analyze the moisture liberation of textile fabrics
Li, Wenbin, Xu, Weilin, Cui, Weigang and Wang, Xin. 2008. "A novel method to analyze the moisture liberation of textile fabrics ." Fibers and Polymers. 9 (3), pp. 312-316. https://doi.org/10.1007/s12221-008-0050-0
Mass production of nanofibers from a spiral coil
Wang, Xin and Wang, Xun Gai. 2013. "Mass production of nanofibers from a spiral coil." Zheng, Laijiu, Skuroda, Shin-ichi , Liu, Huawu, Du, Bing, Ju, Wei and Zhao, Yuping (ed.) 3rd International Conference on Textile Engineering and Materials (ICTEM 2013). Dalian, China 24 - 25 Aug 2013 Zurich, Switzerland. https://doi.org/10.4028/www.scientific.net/AMR.821-822.36