Characterisation and evaluation of shockwave generation in water conditions for coal fracturing
Article
Article Title | Characterisation and evaluation of shockwave generation in water conditions for coal fracturing |
---|---|
ERA Journal ID | 124613 |
Article Category | Article |
Authors | Ren, Fei (Author), Ge, Lei (Author), Stelmashuk, Vitaliy (Author), Rufford, Thomas E. (Author), Xing, Huilin (Author) and Rudolph, Victor (Author) |
Journal Title | Journal of Natural Gas Science and Engineering |
Journal Citation | 66, pp. 255-264 |
Number of Pages | 10 |
Year | 2019 |
Place of Publication | United States |
ISSN | 1875-5100 |
2212-3865 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.jngse.2019.04.005 |
Abstract | We investigated the effect of circuit parameters on shockwaves generated by electrohydraulic discharge (EHD), and the application of EHD to stimulation of coal seam gas reservoirs. The discharge circuit analyses indicate that the deposited electrical energy used for shockwave generation is not simply determined by charging voltage or capacitance. The discharge efficiency is also affected by mutual interactions among inductance, resistance and capacitance as well as real-time current change. Furthermore, the relation between charging voltage and peak pressure strength revealed that voltage at breakdown point, ranging from 9 kV to 28 kV, was more closely associated to shock strength rather than the initial charge voltage. Generally, a higher breakdown voltage tends to lead to a stronger shockwave. Finally the EHD fracturing stimulation conducted on coal cubes showed the coal was effectively fractured with enormous cracks and voids. By using three-dimension computed-tomography (CT), the fracture extension and propagation in the coals are found to be obvious and extensive. Though the existing fracture greatly affects the new fracture development in vertical direction, the horizontal fractures parallel with the bedding plane direction are more likely to occur and even expand across the entire tested coal core. The dramatic coal permeability improvement (over a hundred times) after EHD also validates the cutting-through fractures, as does the enhancement of pore and porosity observed by morphology and structural characterisation via scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). |
Keywords | electrohydraulic discharge; discharge efficiency; peak pressure strength; breakdown voltage; fracture extension |
ANZSRC Field of Research 2020 | 401907. Petroleum and reservoir engineering |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | University of Queensland |
Centre for Future Materials | |
Czech Academy of Sciences, Czech Republic | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q5417/characterisation-and-evaluation-of-shockwave-generation-in-water-conditions-for-coal-fracturing
167
total views8
total downloads4
views this month0
downloads this month