Power effect of ultrasonically vibrated spacers in air gap membrane distillation: Theoretical and experimental investigations
Article
Article Title | Power effect of ultrasonically vibrated spacers in air gap membrane distillation: Theoretical and experimental investigations |
---|---|
ERA Journal ID | 3928 |
Article Category | Article |
Authors | Al-Juboori, Raed A. (Author), Naji, Osamah (Author), Bowtell, Les (Author), Alpatova, Alla (Author), Soukane, Sofiane (Author) and Ghaffour, Norreddine (Author) |
Journal Title | Separation and Purification Technology |
Journal Citation | 262, pp. 1-12 |
Article Number | 118319 |
Number of Pages | 12 |
Year | 2021 |
Publisher | Elsevier |
Place of Publication | United Kingdom |
ISSN | 1383-5866 |
1873-3794 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.seppur.2021.118319 |
Web Address (URL) | https://www.sciencedirect.com/science/article/abs/pii/S1383586621000216 |
Abstract | This study investigates the efficiency of low-power ultrasound in the range of 3.5–30.0 W to improve permeate flux and alleviate membrane fouling in an air–gap membrane distillation (AGMD) system. Natural groundwater and reverse osmosis (RO) reject water were fed into the AGMD system on which fouling experiments were conducted with hydrophobic polyvinylidene fluoride (PVDF) membrane. After 35 h of AGMD system operation with groundwater and RO reject water, fouling caused the permeate flux to decrease by 30% and 40% respectively. Concentration polarization, intermediate pore blocking, and cake filtration appear to be the main reasons for flux decline with both feedwater types. Ultrasound application for a short period of 15 min resulted in flux improvement by as high as 400% and 250% for RO reject and groundwater, respectively. Modelling of the heat and mass transfers showed that the flux increase was mainly due to membrane permeability improvements under ultrasonic vibration. Fouling visualisation using Scanning Electron Microscopy revealed that ultrasound effectively removed membrane fouling without compromising the membrane’s structure. Importantly, permeate flux improvements with targeted low-power ultrasound appears to be proportionally higher than those of high-power ultrasound applied to the whole system, on a flux improvement per ultrasound W/m2 basis. |
Keywords | AGMD; Ultrasonically vibrated spacers; Fouling; Groundwater; RO reject |
ANZSRC Field of Research 2020 | 401102. Environmentally sustainable engineering |
400907. Industrial electronics | |
Byline Affiliations | Faculty of Health, Engineering and Sciences |
King Abdullah University of Science and Technology, Saudi Arabia | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q61x0/power-effect-of-ultrasonically-vibrated-spacers-in-air-gap-membrane-distillation-theoretical-and-experimental-investigations
Download files
144
total views56
total downloads2
views this month1
downloads this month