Causes of irregularities in trends of global mean surface temperature since the late 19th century

Article


Folland, Chris K., Boucher, Olivier, Colman, Andrew and Parker, David E.. 2018. "Causes of irregularities in trends of global mean surface temperature since the late 19th century." Science Advances. 4 (6), pp. 1-16. https://doi.org/10.1126/sciadv.aao5297
Article Title

Causes of irregularities in trends of global mean surface temperature since the late 19th century

ERA Journal ID211335
Article CategoryArticle
AuthorsFolland, Chris K. (Author), Boucher, Olivier (Author), Colman, Andrew (Author) and Parker, David E. (Author)
Journal TitleScience Advances
Journal Citation4 (6), pp. 1-16
Number of Pages16
Year2018
PublisherAmerican Association for the Advancement of Science (AAAS)
Place of PublicationUnited States
ISSN2375-2548
Digital Object Identifier (DOI)https://doi.org/10.1126/sciadv.aao5297
Web Address (URL)https://www.science.org/doi/10.1126/sciadv.aao5297
Abstract

The time series of monthly global mean surface temperature (GST) since 1891 is successfully reconstructed from known natural and anthropogenic forcing factors, including internal climate variability, using a multiple regression technique. Comparisons are made with the performance of 40 CMIP5 models in predicting GST. The relative contributions of the various forcing factors to GST changes vary in time, but most of the warming since 1891 is found to be attributable to the net influence of increasing greenhouse gases and anthropogenic aerosols. Separate statistically independent analyses are also carried out for three periods of GST slowdown (1896–1910, 1941–1975, and 1998–2013 and subperiods); two periods of strong warming (1911–1940 and 1976–1997) are also analyzed. A reduction in total incident solar radiation forcing played a significant cooling role over 2001–2010. The only serious disagreements between the reconstructions and observations occur during the Second World War, especially in the period 1944–1945, when observed near-worldwide sea surface temperatures (SSTs) may be significantly warm-biased. In contrast, reconstructions of near-worldwide SSTs were rather warmer than those observed between about 1907 and 1910. However, the generally high reconstruction accuracy shows that known external and internal forcing factors explain all the main variations in GST between 1891 and 2015, allowing for our current understanding of their uncertainties. Accordingly, no important additional factors are needed to explain the two main warming and three main slowdown periods during this epoch.

KeywordsAnthropogenic aerosols; Anthropogenic forcing; Global mean surface temperature; Internal climate variability; Multiple regression techniques; Reconstruction accuracy; Relative contribution; Sea surface temperatures
ANZSRC Field of Research 2020370201. Climate change processes
370999. Physical geography and environmental geoscience not elsewhere classified
Byline AffiliationsInternational Centre for Applied Climate Science
Sorbonne University, France
Met Office, United Kingdom
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q7785/causes-of-irregularities-in-trends-of-global-mean-surface-temperature-since-the-late-19th-century

Download files


Published Version
sciadv.aao5297.pdf
License: CC BY-NC 4.0
File access level: Anyone

  • 122
    total views
  • 41
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Will 2024 be the first year that global temperature exceeds 1.5°C?
Dunstone, Nick J., Smith, Doug M., Atkinson, Chris, Colman, Andrew, Folland, Chris, Hermanson, Leon, Ineson, Sarah, Killick, Rachel, Morice, Colin, Rayner, Nick, Seabrook, Melissa and Scaife, Adam A.. 2024. "Will 2024 be the first year that global temperature exceeds 1.5°C?" Atmospheric Science Letters. 25 (9). https://doi.org/10.1002/asl.1254
Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?
Chylek, Petr, Folland, Chris K., Klett, James D., Wang, Muyin, Lesins, Glen and Dubey, Manvendra K.. 2024. "Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?" Atmosphere. 15 (5). https://doi.org/10.3390/atmos15050567
Arctic Amplification in the Community Earth System Models (CESM1 and CESM2)
Chylek, Petr, Folland, Chris, Klett, James D., Lesins, Glen and Dubey, Manvendra K.. 2023. "Arctic Amplification in the Community Earth System Models (CESM1 and CESM2)." Atmosphere. 14 (5). https://doi.org/10.3390/atmos14050820
Experiment design of the International CLIVAR C20C+ Detection and Attribution project
Stone, Daithi A., Christidis, Nikolaos, Folland, Chris, Perkins-Kirkpatrick, Sarah, Perlwitz, Judith, Shiogama, Hideo, Wehner, Michael F., Wolski, Piotr, Cholia, Shreyas, Krishnan, Harinarayan, Murray, Donald, Angelil, Oliver, Beyerle, Urs, Ciavarella, Andrew, Dittus, Andrea, Quan, Xiao-Wei and Tadross, Mark. 2019. "Experiment design of the International CLIVAR C20C+ Detection and Attribution project." Weather and Climate Extremes. 24, pp. 1-10. https://doi.org/10.1016/j.wace.2019.100206
Climate Models - Evaluation
Gates, W. L., Henderson-Sellers, A., Boer, G. J., Folland, C. K., Kitoh, A., McAvaney, B. J., Semazzi, F., Smith, N., Weaver, A. J. and Zeng, Q. C.. 1995. "Climate Models - Evaluation." Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. (ed.) Climate Change 1995: The Science of Climate Change: Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom. Cambridge University Press. pp. 229-284
Pen portraits of Presidents – Professor Raymond Hide, CBE, ScD, FRS
Folland, Chris K. and Read, Peter L.. 2022. "Pen portraits of Presidents – Professor Raymond Hide, CBE, ScD, FRS." Weather. 77 (3), pp. 103-107. https://doi.org/10.1002/wea.4105
Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models
Chylek, Petr, Folland, Chris, Klett, James D., Wang, Muyin, Hengartner, Nick, Lesins, Glen and Dubey, Manvendra K.. 2022. "Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models." Geophysical Research Letters. 49 (13). https://doi.org/10.1029/2022GL099371
Inter-decadal modulation of the impact of ENSO on Australia
Power, S., Casey, T., Folland, C., Colman, A. and Mehta, V.. 1999. "Inter-decadal modulation of the impact of ENSO on Australia." Climate Dynamics. 15 (5), pp. 319-324. https://doi.org/10.1007/s003820050284
A Tripole Index for the Interdecadal Pacific Oscillation
Henley, Benjamin J., Gergis, Joelle, Karoly, David J., Power, Scott, Kennedy, John and Folland, Chris K.. 2015. "A Tripole Index for the Interdecadal Pacific Oscillation." Climate Dynamics. 45 (11-12), pp. 3077-3090. https://doi.org/10.1007/s00382-015-2525-1
Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation
Henley, Benjamin J., Meehl, Gerald, Power, Scott B., Folland, Chris K., King, Andrew D., Brown, Jaclyn N., Karoly, David J., Delage, Francois, Gallant, Ailie J. E., Freund, Mandy and Neukom, Raphael. 2017. "Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation." Environmental Research Letters. 12 (4), pp. 1-12. https://doi.org/10.1088/1748-9326/aa5cc8
Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors
Barcikowska, Monika J., Kapnick, Sarah B., Krishnamurty, Lakshmi, Russo, Simone, Cherchi, Annalisa and Folland, Chris K.. 2020. "Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors." Earth System Dynamics. 11 (1), pp. 161-181. https://doi.org/10.5194/esd-11-161-2020
CMIP5 climate models overestimate cooling by volcanic aerosols
Chylek, Petr, Folland, Chris, Klett, James D. and Dubey, Manvendra K.. 2020. "CMIP5 climate models overestimate cooling by volcanic aerosols." Geophysical Research Letters. 47. https://doi.org/10.1029/2020GL087047
Atmospheric circulation. 1. Mean sea level pressure and related modes of variability
Allan, R. and Folland, C. K.. 2018. "Atmospheric circulation. 1. Mean sea level pressure and related modes of variability." Bulletin of the American Meteorological Society. 99 (8), pp. S39-S41. https://doi.org/10.1175/2018BAMSStateoftheClimate.1
Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales
Linderholm, Hans W. and Folland, Chris K.. 2017. "Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales." Past Global Changes Magazine. 25 (1), pp. 57-60. https://doi.org/10.22498/pages.25.1.57
Global meteorological influences on the record UK rainfall of winter 2013–14
Knight, Jeff R., Maidens, Anna, Watson, Peter A. G., Andrews, Martin, Belcher, Stephen, Brunet, Gilbert, Fereday, David, Folland, Chris K., Scaife, Adam A. and Slingo, Julia. 2017. "Global meteorological influences on the record UK rainfall of winter 2013–14." Environmental Research Letters. 12 (7). https://doi.org/10.1088/1748-9326/aa693c
Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures
Chylek, Petr, Folland, Chris K., Lesins, Glen and Dubey, Manvendra K.. 2010. "Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures." Geophysical Research Letters. 37 (8 (L08703)). https://doi.org/10.1029/2010GL042793
Rainfall variability of decadal and longer time scales: signal or noise?
Meinke, Holger, deVoil, Peter, Hammer, Graeme L., Power, Scott, Allan, Robert J., Stone, Roger C., Folland, Chris K. and Potgieter, Andries B.. 2005. "Rainfall variability of decadal and longer time scales: signal or noise?" Journal of Climate. 18 (1), pp. 89-90. https://doi.org/10.1175/JCLI-3263.1
ENSIP: the El Nino simulation intercomparison project
Latif, Mojib, Sperber, K., Arblaster, J., Braconnot, P., Chen, D., Colman, A., Cubasch, U., Cooper, C., Delecluse, P., DeWitt, D., Fairhead, L., Flato, G., Hogan, T., Ji, M., Kimoto, M., Kitoh, A., Knutson, T., Le Treut, H., Li, T., ..., Zebiak, S.. 2001. "ENSIP: the El Nino simulation intercomparison project." Climate Dynamics. 18 (3-4), pp. 255-276. https://doi.org/10.1007/s003820100174