Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?

Article


Chylek, Petr, Folland, Chris K., Klett, James D., Wang, Muyin, Lesins, Glen and Dubey, Manvendra K.. 2024. "Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?" Atmosphere. 15 (5). https://doi.org/10.3390/atmos15050567
Article Title

Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?

ERA Journal ID210170
Article CategoryArticle
AuthorsChylek, Petr, Folland, Chris K., Klett, James D., Wang, Muyin, Lesins, Glen and Dubey, Manvendra K.
Journal TitleAtmosphere
Journal Citation15 (5)
Article Number567
Number of Pages11
Year2024
PublisherMDPI AG
Place of PublicationSwitzerland
ISSN2073-4433
Digital Object Identifier (DOI)https://doi.org/10.3390/atmos15050567
Web Address (URL)https://www.mdpi.com/2073-4433/15/5/567
AbstractAn accurate simulation and projection of future warming are needed for a proper policy response to expected climate change. We examine the simulations of the mean global and Arctic surface air temperatures by the CMIP6 (Climate Models Intercomparison Project phase 6) climate models. Most models overestimate the observed mean global warming. Only seven out of 19 models considered simulate global warming that is within ±15% of the observed warming between the average of the 2014–2023 and 1961–1990 reference period. Ten models overestimate global warming by more than 15% and only one of the models underestimates it by more than 15%. Arctic warming is simulated by the CMIP6 climate models much better than the mean global warming. The reason is an equal spread of over and underestimates of Arctic warming by the models, while most of the models overestimate the mean global warming. Eight models are within ±15% of the observed Arctic warming. Only three models are accurate within ±15% for both mean global and Arctic temperature simulations. © 2024 by the authors.
KeywordsArctic; selection of models; climate CMIP6 models; global warming
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020370299. Climate change science not elsewhere classified
Byline AffiliationsLos Alamos National Laboratory, United States
University of East Anglia, United Kingdom
Centre for Applied Climate Sciences
University of Gothenburg, Sweden
PAR Associates, United States
University of Washington, United States
Pacific Marine Environmental Laboratory, United States
Dalhousie University, Canada
Permalink -

https://research.usq.edu.au/item/z8493/why-does-the-ensemble-mean-of-cmip6-models-simulate-arctic-temperature-more-accurately-than-global-temperature

Download files


Published Version
atmosphere-15-00567-v2.pdf
License: CC BY 4.0
File access level: Anyone

  • 5
    total views
  • 1
    total downloads
  • 5
    views this month
  • 1
    downloads this month

Export as

Related outputs

Will 2024 be the first year that global temperature exceeds 1.5°C?
Dunstone, Nick J., Smith, Doug M., Atkinson, Chris, Colman, Andrew, Folland, Chris, Hermanson, Leon, Ineson, Sarah, Killick, Rachel, Morice, Colin, Rayner, Nick, Seabrook, Melissa and Scaife, Adam A.. 2024. "Will 2024 be the first year that global temperature exceeds 1.5°C?" Atmospheric Science Letters. 25 (9). https://doi.org/10.1002/asl.1254
Arctic Amplification in the Community Earth System Models (CESM1 and CESM2)
Chylek, Petr, Folland, Chris, Klett, James D., Lesins, Glen and Dubey, Manvendra K.. 2023. "Arctic Amplification in the Community Earth System Models (CESM1 and CESM2)." Atmosphere. 14 (5). https://doi.org/10.3390/atmos14050820
Causes of irregularities in trends of global mean surface temperature since the late 19th century
Folland, Chris K., Boucher, Olivier, Colman, Andrew and Parker, David E.. 2018. "Causes of irregularities in trends of global mean surface temperature since the late 19th century." Science Advances. 4 (6), pp. 1-16. https://doi.org/10.1126/sciadv.aao5297
Experiment design of the International CLIVAR C20C+ Detection and Attribution project
Stone, Daithi A., Christidis, Nikolaos, Folland, Chris, Perkins-Kirkpatrick, Sarah, Perlwitz, Judith, Shiogama, Hideo, Wehner, Michael F., Wolski, Piotr, Cholia, Shreyas, Krishnan, Harinarayan, Murray, Donald, Angelil, Oliver, Beyerle, Urs, Ciavarella, Andrew, Dittus, Andrea, Quan, Xiao-Wei and Tadross, Mark. 2019. "Experiment design of the International CLIVAR C20C+ Detection and Attribution project." Weather and Climate Extremes. 24, pp. 1-10. https://doi.org/10.1016/j.wace.2019.100206
Climate Models - Evaluation
Gates, W. L., Henderson-Sellers, A., Boer, G. J., Folland, C. K., Kitoh, A., McAvaney, B. J., Semazzi, F., Smith, N., Weaver, A. J. and Zeng, Q. C.. 1995. "Climate Models - Evaluation." Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. (ed.) Climate Change 1995: The Science of Climate Change: Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom. Cambridge University Press. pp. 229-284
Pen portraits of Presidents – Professor Raymond Hide, CBE, ScD, FRS
Folland, Chris K. and Read, Peter L.. 2022. "Pen portraits of Presidents – Professor Raymond Hide, CBE, ScD, FRS." Weather. 77 (3), pp. 103-107. https://doi.org/10.1002/wea.4105
Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models
Chylek, Petr, Folland, Chris, Klett, James D., Wang, Muyin, Hengartner, Nick, Lesins, Glen and Dubey, Manvendra K.. 2022. "Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models." Geophysical Research Letters. 49 (13). https://doi.org/10.1029/2022GL099371
Inter-decadal modulation of the impact of ENSO on Australia
Power, S., Casey, T., Folland, C., Colman, A. and Mehta, V.. 1999. "Inter-decadal modulation of the impact of ENSO on Australia." Climate Dynamics. 15 (5), pp. 319-324. https://doi.org/10.1007/s003820050284
A Tripole Index for the Interdecadal Pacific Oscillation
Henley, Benjamin J., Gergis, Joelle, Karoly, David J., Power, Scott, Kennedy, John and Folland, Chris K.. 2015. "A Tripole Index for the Interdecadal Pacific Oscillation." Climate Dynamics. 45 (11-12), pp. 3077-3090. https://doi.org/10.1007/s00382-015-2525-1
Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation
Henley, Benjamin J., Meehl, Gerald, Power, Scott B., Folland, Chris K., King, Andrew D., Brown, Jaclyn N., Karoly, David J., Delage, Francois, Gallant, Ailie J. E., Freund, Mandy and Neukom, Raphael. 2017. "Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation." Environmental Research Letters. 12 (4), pp. 1-12. https://doi.org/10.1088/1748-9326/aa5cc8
Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors
Barcikowska, Monika J., Kapnick, Sarah B., Krishnamurty, Lakshmi, Russo, Simone, Cherchi, Annalisa and Folland, Chris K.. 2020. "Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors." Earth System Dynamics. 11 (1), pp. 161-181. https://doi.org/10.5194/esd-11-161-2020
CMIP5 climate models overestimate cooling by volcanic aerosols
Chylek, Petr, Folland, Chris, Klett, James D. and Dubey, Manvendra K.. 2020. "CMIP5 climate models overestimate cooling by volcanic aerosols." Geophysical Research Letters. 47. https://doi.org/10.1029/2020GL087047
Atmospheric circulation. 1. Mean sea level pressure and related modes of variability
Allan, R. and Folland, C. K.. 2018. "Atmospheric circulation. 1. Mean sea level pressure and related modes of variability." Bulletin of the American Meteorological Society. 99 (8), pp. S39-S41. https://doi.org/10.1175/2018BAMSStateoftheClimate.1
Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales
Linderholm, Hans W. and Folland, Chris K.. 2017. "Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales." Past Global Changes Magazine. 25 (1), pp. 57-60. https://doi.org/10.22498/pages.25.1.57
Global meteorological influences on the record UK rainfall of winter 2013–14
Knight, Jeff R., Maidens, Anna, Watson, Peter A. G., Andrews, Martin, Belcher, Stephen, Brunet, Gilbert, Fereday, David, Folland, Chris K., Scaife, Adam A. and Slingo, Julia. 2017. "Global meteorological influences on the record UK rainfall of winter 2013–14." Environmental Research Letters. 12 (7). https://doi.org/10.1088/1748-9326/aa693c
Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures
Chylek, Petr, Folland, Chris K., Lesins, Glen and Dubey, Manvendra K.. 2010. "Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures." Geophysical Research Letters. 37 (8 (L08703)). https://doi.org/10.1029/2010GL042793
Rainfall variability of decadal and longer time scales: signal or noise?
Meinke, Holger, deVoil, Peter, Hammer, Graeme L., Power, Scott, Allan, Robert J., Stone, Roger C., Folland, Chris K. and Potgieter, Andries B.. 2005. "Rainfall variability of decadal and longer time scales: signal or noise?" Journal of Climate. 18 (1), pp. 89-90. https://doi.org/10.1175/JCLI-3263.1