High Values of the Arctic Amplification in the Early Decades of the 21st Century: Causes of Discrepancy by CMIP6 Models Between Observation and Simulation

Article


Chylek, Petr, Folland, Chris K., Klett, James D., Wang, Muyin, Lesins, Glen and Dubey, Manvendra K.. 2023. "High Values of the Arctic Amplification in the Early Decades of the 21st Century: Causes of Discrepancy by CMIP6 Models Between Observation and Simulation." Journal of Geophysical Research: Atmospheres. 128 (23). https://doi.org/10.1029/2023JD039269
Article Title

High Values of the Arctic Amplification in the Early Decades of the 21st Century: Causes of Discrepancy by CMIP6 Models Between Observation and Simulation

ERA Journal ID210881
Article CategoryArticle
AuthorsChylek, Petr, Folland, Chris K., Klett, James D., Wang, Muyin, Lesins, Glen and Dubey, Manvendra K.
Journal TitleJournal of Geophysical Research: Atmospheres
Journal Citation128 (23)
Article Numbere2023JD039269
Number of Pages10
Year2023
Place of PublicationUnited States
ISSN2169-897X
2169-8996
Digital Object Identifier (DOI)https://doi.org/10.1029/2023JD039269
Web Address (URL)https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JD039269
Abstract

Arctic Amplification (AA) in the first decade of the 21st century has reached values between 4 and 5, with a subsequent decrease to current values of about 3.6, while the value was from 2 to 3 during the twentieth century. The ensemble mean of the CMIP6 models has difficulty in reproducing the recently observed high values of the AA. In this report, we identify the main reason for this difficulty to be the CMIP6 models overestimate of the mean global temperature trend since about 1990. The largest values of the AA are observed in winter and spring. A sharp AA peak in 1987 spring was caused by a peak in the Arctic temperature trend occurring at the same time as a dip in the trend of mean global temperature. The winter AA has increased almost monotonically since 1990. Dividing the AA between the Arctic land and ocean areas shows that the ocean area makes a larger contribution to the AA. Our future projection of the AA suggests an increasing AA for about the next decade, followed by a slow decrease to about 3.5 in the 2050s.

KeywordsArctic Amplification; Arctic climate; Arctic temperature; climate models; CMIP6; global temperature
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020370202. Climatology
Byline AffiliationsLos Alamos National Laboratory, United States
Centre for Applied Climate Sciences
University of East Anglia, United Kingdom
University of Gothenburg, Sweden
PAR Associates, United States
University of Washington, United States
Pacific Marine Environmental Laboratory, United States
Dalhousie University, Canada
Permalink -

https://research.usq.edu.au/item/zq338/high-values-of-the-arctic-amplification-in-the-early-decades-of-the-21st-century-causes-of-discrepancy-by-cmip6-models-between-observation-and-simulation

  • 2
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

The Summer North Atlantic Oscillation, Arctic sea ice, and Arctic jet Rossby wave forcing
Folland, Chris K., Ou, Tinghai, Linderholm, Hans W., Scaife, Adam A., Knight, Jeff and Chen, Deliang. 2024. "The Summer North Atlantic Oscillation, Arctic sea ice, and Arctic jet Rossby wave forcing." Science Advances. 10 (46). https://doi.org/10.1126/sciadv.adk6693
Will 2024 be the first year that global temperature exceeds 1.5°C?
Dunstone, Nick J., Smith, Doug M., Atkinson, Chris, Colman, Andrew, Folland, Chris, Hermanson, Leon, Ineson, Sarah, Killick, Rachel, Morice, Colin, Rayner, Nick, Seabrook, Melissa and Scaife, Adam A.. 2024. "Will 2024 be the first year that global temperature exceeds 1.5°C?" Atmospheric Science Letters. 25 (9). https://doi.org/10.1002/asl.1254
Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?
Chylek, Petr, Folland, Chris K., Klett, James D., Wang, Muyin, Lesins, Glen and Dubey, Manvendra K.. 2024. "Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?" Atmosphere. 15 (5). https://doi.org/10.3390/atmos15050567
Arctic Amplification in the Community Earth System Models (CESM1 and CESM2)
Chylek, Petr, Folland, Chris, Klett, James D., Lesins, Glen and Dubey, Manvendra K.. 2023. "Arctic Amplification in the Community Earth System Models (CESM1 and CESM2)." Atmosphere. 14 (5). https://doi.org/10.3390/atmos14050820
Causes of irregularities in trends of global mean surface temperature since the late 19th century
Folland, Chris K., Boucher, Olivier, Colman, Andrew and Parker, David E.. 2018. "Causes of irregularities in trends of global mean surface temperature since the late 19th century." Science Advances. 4 (6), pp. 1-16. https://doi.org/10.1126/sciadv.aao5297
Experiment design of the International CLIVAR C20C+ Detection and Attribution project
Stone, Daithi A., Christidis, Nikolaos, Folland, Chris, Perkins-Kirkpatrick, Sarah, Perlwitz, Judith, Shiogama, Hideo, Wehner, Michael F., Wolski, Piotr, Cholia, Shreyas, Krishnan, Harinarayan, Murray, Donald, Angelil, Oliver, Beyerle, Urs, Ciavarella, Andrew, Dittus, Andrea, Quan, Xiao-Wei and Tadross, Mark. 2019. "Experiment design of the International CLIVAR C20C+ Detection and Attribution project." Weather and Climate Extremes. 24, pp. 1-10. https://doi.org/10.1016/j.wace.2019.100206
Climate Models - Evaluation
Gates, W. L., Henderson-Sellers, A., Boer, G. J., Folland, C. K., Kitoh, A., McAvaney, B. J., Semazzi, F., Smith, N., Weaver, A. J. and Zeng, Q. C.. 1995. "Climate Models - Evaluation." Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. (ed.) Climate Change 1995: The Science of Climate Change: Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom. Cambridge University Press. pp. 229-284
Pen portraits of Presidents – Professor Raymond Hide, CBE, ScD, FRS
Folland, Chris K. and Read, Peter L.. 2022. "Pen portraits of Presidents – Professor Raymond Hide, CBE, ScD, FRS." Weather. 77 (3), pp. 103-107. https://doi.org/10.1002/wea.4105
Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models
Chylek, Petr, Folland, Chris, Klett, James D., Wang, Muyin, Hengartner, Nick, Lesins, Glen and Dubey, Manvendra K.. 2022. "Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models." Geophysical Research Letters. 49 (13). https://doi.org/10.1029/2022GL099371
Inter-decadal modulation of the impact of ENSO on Australia
Power, S., Casey, T., Folland, C., Colman, A. and Mehta, V.. 1999. "Inter-decadal modulation of the impact of ENSO on Australia." Climate Dynamics. 15 (5), pp. 319-324. https://doi.org/10.1007/s003820050284
A Tripole Index for the Interdecadal Pacific Oscillation
Henley, Benjamin J., Gergis, Joelle, Karoly, David J., Power, Scott, Kennedy, John and Folland, Chris K.. 2015. "A Tripole Index for the Interdecadal Pacific Oscillation." Climate Dynamics. 45 (11-12), pp. 3077-3090. https://doi.org/10.1007/s00382-015-2525-1
Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation
Henley, Benjamin J., Meehl, Gerald, Power, Scott B., Folland, Chris K., King, Andrew D., Brown, Jaclyn N., Karoly, David J., Delage, Francois, Gallant, Ailie J. E., Freund, Mandy and Neukom, Raphael. 2017. "Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation." Environmental Research Letters. 12 (4), pp. 1-12. https://doi.org/10.1088/1748-9326/aa5cc8
Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors
Barcikowska, Monika J., Kapnick, Sarah B., Krishnamurty, Lakshmi, Russo, Simone, Cherchi, Annalisa and Folland, Chris K.. 2020. "Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors." Earth System Dynamics. 11 (1), pp. 161-181. https://doi.org/10.5194/esd-11-161-2020
CMIP5 climate models overestimate cooling by volcanic aerosols
Chylek, Petr, Folland, Chris, Klett, James D. and Dubey, Manvendra K.. 2020. "CMIP5 climate models overestimate cooling by volcanic aerosols." Geophysical Research Letters. 47. https://doi.org/10.1029/2020GL087047
Atmospheric circulation. 1. Mean sea level pressure and related modes of variability
Allan, R. and Folland, C. K.. 2018. "Atmospheric circulation. 1. Mean sea level pressure and related modes of variability." Bulletin of the American Meteorological Society. 99 (8), pp. S39-S41. https://doi.org/10.1175/2018BAMSStateoftheClimate.1
Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales
Linderholm, Hans W. and Folland, Chris K.. 2017. "Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales." Past Global Changes Magazine. 25 (1), pp. 57-60. https://doi.org/10.22498/pages.25.1.57
Global meteorological influences on the record UK rainfall of winter 2013–14
Knight, Jeff R., Maidens, Anna, Watson, Peter A. G., Andrews, Martin, Belcher, Stephen, Brunet, Gilbert, Fereday, David, Folland, Chris K., Scaife, Adam A. and Slingo, Julia. 2017. "Global meteorological influences on the record UK rainfall of winter 2013–14." Environmental Research Letters. 12 (7). https://doi.org/10.1088/1748-9326/aa693c
Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures
Chylek, Petr, Folland, Chris K., Lesins, Glen and Dubey, Manvendra K.. 2010. "Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures." Geophysical Research Letters. 37 (8 (L08703)). https://doi.org/10.1029/2010GL042793
Rainfall variability of decadal and longer time scales: signal or noise?
Meinke, Holger, deVoil, Peter, Hammer, Graeme L., Power, Scott, Allan, Robert J., Stone, Roger C., Folland, Chris K. and Potgieter, Andries B.. 2005. "Rainfall variability of decadal and longer time scales: signal or noise?" Journal of Climate. 18 (1), pp. 89-90. https://doi.org/10.1175/JCLI-3263.1