The Summer North Atlantic Oscillation, Arctic sea ice, and Arctic jet Rossby wave forcing

Article


Folland, Chris K., Ou, Tinghai, Linderholm, Hans W., Scaife, Adam A., Knight, Jeff and Chen, Deliang. 2024. "The Summer North Atlantic Oscillation, Arctic sea ice, and Arctic jet Rossby wave forcing." Science Advances. 10 (46). https://doi.org/10.1126/sciadv.adk6693
Article Title

The Summer North Atlantic Oscillation, Arctic sea ice, and Arctic jet Rossby wave forcing

ERA Journal ID211335
Article CategoryArticle
AuthorsFolland, Chris K., Ou, Tinghai, Linderholm, Hans W., Scaife, Adam A., Knight, Jeff and Chen, Deliang
Journal TitleScience Advances
Journal Citation10 (46)
Number of Pages20
Year2024
PublisherAmerican Association for the Advancement of Science (AAAS)
Place of PublicationUnited States
ISSN2375-2548
Digital Object Identifier (DOI)https://doi.org/10.1126/sciadv.adk6693
Web Address (URL)https://www.science.org/doi/10.1126/sciadv.adk6693
Abstract

We use Coupled Model Intercomparison Project Phase 6 (CMIP6) coupled and Atmospheric Model Intercomparison Project (AMIP) climate models, dynamical analyses, and observations to investigate interactions between summer Arctic sea ice concentration (SIC) variations and the Summer North Atlantic Oscillation (SNAO). Observations suggest that SIC-SNAO relationships mainly come from the East Siberian to Arctic Canada (ESAC) region where a weak atmospheric jet stream exists in summer. Twelve CMIP6 models with the most realistic atmospheric climatologies over the North Atlantic and Europe agree well with reanalyses on relationships between SIC and Northern Hemisphere atmospheric circulation. CMIP6 model data indicate that ESAC SIC influences the SNAO with a lead time of several weeks. However, AMIP simulations do not reproduce the observed atmospheric circulation when observed sea ice is prescribed. Rossby wave analyses do though support observed ESAC SIC influences on the SNAO. We conclude that ESAC Arctic SIC modestly influences the SNAO, and such investigations require the use of coupled models.

Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 20203702. Climate change science
Byline AffiliationsUniversity of East Anglia, United Kingdom
University of Southern Queensland
Met Office, United Kingdom
University of Gothenburg, Sweden
University of Exeter, United Kingdom
Permalink -

https://research.usq.edu.au/item/zqzx1/the-summer-north-atlantic-oscillation-arctic-sea-ice-and-arctic-jet-rossby-wave-forcing

Download files


Published Version
sciadv.adk6693.pdf
License: CC BY 4.0
File access level: Anyone

  • 3
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Adsorption-coupled Fenton type reduction of bromate in water by high-yield polymer-derived ceramic-supported nano-zerovalent iron
Idrees, Muhammad, Batool, Saima, Rasheed, Hina, Herath, Indika, Bundschuh, Jochen, Niazi, Nabeel Khan, Ahmad, Mahtab, Xu, Junguo and Chen, Deliang. 2024. "Adsorption-coupled Fenton type reduction of bromate in water by high-yield polymer-derived ceramic-supported nano-zerovalent iron." Environmental Research. 258. https://doi.org/10.1016/j.envres.2024.119419
Will 2024 be the first year that global temperature exceeds 1.5°C?
Dunstone, Nick J., Smith, Doug M., Atkinson, Chris, Colman, Andrew, Folland, Chris, Hermanson, Leon, Ineson, Sarah, Killick, Rachel, Morice, Colin, Rayner, Nick, Seabrook, Melissa and Scaife, Adam A.. 2024. "Will 2024 be the first year that global temperature exceeds 1.5°C?" Atmospheric Science Letters. 25 (9). https://doi.org/10.1002/asl.1254
Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?
Chylek, Petr, Folland, Chris K., Klett, James D., Wang, Muyin, Lesins, Glen and Dubey, Manvendra K.. 2024. "Why Does the Ensemble Mean of CMIP6 Models Simulate Arctic Temperature More Accurately Than Global Temperature?" Atmosphere. 15 (5). https://doi.org/10.3390/atmos15050567
Recent applications and potential of near-term (interannual to decadal) climate predictions
O'Kane, Terence J., Scaife, Adam A., Kushnir, Yochanan, Brookshaw, Anca, Buontempo, Carlo, Carlin, David, Connell, Richenda K., Doblas-Reyes, Francisco, Dunstone, Nick, Forster, Kristian, Graca, Antonio, Hobday, Alistair J., Kitsios, Vassili and Power, Scott. 2023. "Recent applications and potential of near-term (interannual to decadal) climate predictions." Frontiers in Climate. 5. https://doi.org/10.3389/fclim.2023.1121626
Arctic Amplification in the Community Earth System Models (CESM1 and CESM2)
Chylek, Petr, Folland, Chris, Klett, James D., Lesins, Glen and Dubey, Manvendra K.. 2023. "Arctic Amplification in the Community Earth System Models (CESM1 and CESM2)." Atmosphere. 14 (5). https://doi.org/10.3390/atmos14050820
Causes of irregularities in trends of global mean surface temperature since the late 19th century
Folland, Chris K., Boucher, Olivier, Colman, Andrew and Parker, David E.. 2018. "Causes of irregularities in trends of global mean surface temperature since the late 19th century." Science Advances. 4 (6), pp. 1-16. https://doi.org/10.1126/sciadv.aao5297
Experiment design of the International CLIVAR C20C+ Detection and Attribution project
Stone, Daithi A., Christidis, Nikolaos, Folland, Chris, Perkins-Kirkpatrick, Sarah, Perlwitz, Judith, Shiogama, Hideo, Wehner, Michael F., Wolski, Piotr, Cholia, Shreyas, Krishnan, Harinarayan, Murray, Donald, Angelil, Oliver, Beyerle, Urs, Ciavarella, Andrew, Dittus, Andrea, Quan, Xiao-Wei and Tadross, Mark. 2019. "Experiment design of the International CLIVAR C20C+ Detection and Attribution project." Weather and Climate Extremes. 24, pp. 1-10. https://doi.org/10.1016/j.wace.2019.100206
Climate Models - Evaluation
Gates, W. L., Henderson-Sellers, A., Boer, G. J., Folland, C. K., Kitoh, A., McAvaney, B. J., Semazzi, F., Smith, N., Weaver, A. J. and Zeng, Q. C.. 1995. "Climate Models - Evaluation." Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. (ed.) Climate Change 1995: The Science of Climate Change: Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom. Cambridge University Press. pp. 229-284
Pen portraits of Presidents – Professor Raymond Hide, CBE, ScD, FRS
Folland, Chris K. and Read, Peter L.. 2022. "Pen portraits of Presidents – Professor Raymond Hide, CBE, ScD, FRS." Weather. 77 (3), pp. 103-107. https://doi.org/10.1002/wea.4105
Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models
Chylek, Petr, Folland, Chris, Klett, James D., Wang, Muyin, Hengartner, Nick, Lesins, Glen and Dubey, Manvendra K.. 2022. "Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models." Geophysical Research Letters. 49 (13). https://doi.org/10.1029/2022GL099371
Towards operational predictions of the near-term climate
Kushnir, Yochanan, Scaife, Adam A., Arritt, Raymond, Balsamo, Gianpaolo, Boer, George, Doblas-Reyes, Francisco, Hawkins, Ed, Kimoto, Masahide, Kolli, Rupa Kumar, Kumar, Arun, Matei, Daniela, Matthes, Katja, Muller, Wolfgang A., O’Kane, Terence, Perlwitz, Judith, Power, Scott, Raphael, Marilyn, Shimpo, Akihiko, Smith, Doug, ..., Wu, Bo. 2019. "Towards operational predictions of the near-term climate." Nature Climate Change. 9 (2), pp. 94-101. https://doi.org/10.1038/s41558-018-0359-7
Inter-decadal modulation of the impact of ENSO on Australia
Power, S., Casey, T., Folland, C., Colman, A. and Mehta, V.. 1999. "Inter-decadal modulation of the impact of ENSO on Australia." Climate Dynamics. 15 (5), pp. 319-324. https://doi.org/10.1007/s003820050284
Predicted chance that global warming will temporarily exceed 1.5 °C
Smith, D. M., Scaife, A. A., Hawkins, E., Bilbao, R., Boer, G. J., Caian, M., Caron, L.-P., Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J., Doescher, R., Dunstone, N. J., Eade, R., Hermanson, L., Ishii, M., Kharin, V., Kimoto, M., Koenigk, T., Kushnir, Y., ..., Yeager, S.. 2018. "Predicted chance that global warming will temporarily exceed 1.5 °C." Geophysical Research Letters. 45 (21), pp. 11,895-11,903. https://doi.org/10.1029/2018GL079362
A Tripole Index for the Interdecadal Pacific Oscillation
Henley, Benjamin J., Gergis, Joelle, Karoly, David J., Power, Scott, Kennedy, John and Folland, Chris K.. 2015. "A Tripole Index for the Interdecadal Pacific Oscillation." Climate Dynamics. 45 (11-12), pp. 3077-3090. https://doi.org/10.1007/s00382-015-2525-1
Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation
Henley, Benjamin J., Meehl, Gerald, Power, Scott B., Folland, Chris K., King, Andrew D., Brown, Jaclyn N., Karoly, David J., Delage, Francois, Gallant, Ailie J. E., Freund, Mandy and Neukom, Raphael. 2017. "Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation." Environmental Research Letters. 12 (4), pp. 1-12. https://doi.org/10.1088/1748-9326/aa5cc8
The UK-China Climate Science to Service Partnership
Scaife, Adam A., Good, Elizabeth, Sun, Ying, Yan, Zhongwei, Dunstone, Nick, Ren, Hong-Li Ren, Li, Chaofan, Lu, Riyu, Wu, Peili, Ke, Zongjian, Ma, Zhuguo, Furtado, Kalli, Wu, Tongwen, Zhou, Tianjuan, Dunbar, Tyrone, Hewitt, Chris, Golding, Nicola, Zhang, Peiqun, Allan, Rob, ..., Belcher, Stephen. 2021. "The UK-China Climate Science to Service Partnership." Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-20-0055.1
Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors
Barcikowska, Monika J., Kapnick, Sarah B., Krishnamurty, Lakshmi, Russo, Simone, Cherchi, Annalisa and Folland, Chris K.. 2020. "Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors." Earth System Dynamics. 11 (1), pp. 161-181. https://doi.org/10.5194/esd-11-161-2020
CMIP5 climate models overestimate cooling by volcanic aerosols
Chylek, Petr, Folland, Chris, Klett, James D. and Dubey, Manvendra K.. 2020. "CMIP5 climate models overestimate cooling by volcanic aerosols." Geophysical Research Letters. 47. https://doi.org/10.1029/2020GL087047
Atmospheric circulation. 1. Mean sea level pressure and related modes of variability
Allan, R. and Folland, C. K.. 2018. "Atmospheric circulation. 1. Mean sea level pressure and related modes of variability." Bulletin of the American Meteorological Society. 99 (8), pp. S39-S41. https://doi.org/10.1175/2018BAMSStateoftheClimate.1
Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales
Linderholm, Hans W. and Folland, Chris K.. 2017. "Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales." Past Global Changes Magazine. 25 (1), pp. 57-60. https://doi.org/10.22498/pages.25.1.57
Global meteorological influences on the record UK rainfall of winter 2013–14
Knight, Jeff R., Maidens, Anna, Watson, Peter A. G., Andrews, Martin, Belcher, Stephen, Brunet, Gilbert, Fereday, David, Folland, Chris K., Scaife, Adam A. and Slingo, Julia. 2017. "Global meteorological influences on the record UK rainfall of winter 2013–14." Environmental Research Letters. 12 (7). https://doi.org/10.1088/1748-9326/aa693c
Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures
Chylek, Petr, Folland, Chris K., Lesins, Glen and Dubey, Manvendra K.. 2010. "Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures." Geophysical Research Letters. 37 (8 (L08703)). https://doi.org/10.1029/2010GL042793
Rainfall variability of decadal and longer time scales: signal or noise?
Meinke, Holger, deVoil, Peter, Hammer, Graeme L., Power, Scott, Allan, Robert J., Stone, Roger C., Folland, Chris K. and Potgieter, Andries B.. 2005. "Rainfall variability of decadal and longer time scales: signal or noise?" Journal of Climate. 18 (1), pp. 89-90. https://doi.org/10.1175/JCLI-3263.1
Impact of Multidecadal Fluctuations in the Atlantic Thermohaline Circulation on Indo-Pacific Climate Variability in a Coupled GCM
Rashid, Harun A., Power, Scott B. and Knight, Jeff R.. 2010. "Impact of Multidecadal Fluctuations in the Atlantic Thermohaline Circulation on Indo-Pacific Climate Variability in a Coupled GCM." Journal of Climate. 23 (14), pp. 4038-4044. https://doi.org/10.1175/2010JCLI3430.1