Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect
Article
Mendez, Julie, Annamalai, Pratheep K., Eichhorn, Stephen J., Rusli, Rafeadah, Rowan, Stuart J., Foste, E. Johan and Weder, Christoph. 2011. "Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect." Macromolecules. 44 (17), pp. 6827-6835. https://doi.org/10.1021/ma201502k
Article Title | Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect |
---|---|
ERA Journal ID | 1687 |
Article Category | Article |
Authors | Mendez, Julie, Annamalai, Pratheep K., Eichhorn, Stephen J., Rusli, Rafeadah, Rowan, Stuart J., Foste, E. Johan and Weder, Christoph |
Journal Title | Macromolecules |
Journal Citation | 44 (17), pp. 6827-6835 |
Number of Pages | 9 |
Year | 2011 |
Publisher | American Chemical Society |
Place of Publication | United States |
ISSN | 0024-9297 |
1520-5835 | |
Digital Object Identifier (DOI) | https://doi.org/10.1021/ma201502k |
Web Address (URL) | https://pubs.acs.org/doi/10.1021/ma201502k |
Abstract | New biomimetic, stimuli-responsive mechanically adaptive nanocomposites, which change their mechanical properties upon exposure to water and display a water-activated shape-memory effect, were investigated. These materials were produced by introducing rigid cotton cellulose nanowhiskers (CNWs) into a rubbery polyurethane (PU) matrix. A series of materials with CNW concentrations of 2–20% v/v was produced by solution blending CNWs and the PU. Films were subsequently prepared by compression molding. The introduction of CNWs led to an increase of the tensile storage moduli (E′) in the dry nanocomposites. The level of reinforcement scaled with the CNW content and followed the Halpin–Kardos model below and the percolation model above the percolation limit of ∼7% v/v. Upon exposure to water, the materials with a CNW content above the percolation limit swelled slightly and showed a decrease of E′, for example from 1 GPa to 144 MPa in the case of the material with 20% v/v CNWs. This effect is the result of competitive hydrogen bonding between water and CNWs, which reduces the hydrogen bonding between the CNWs and weakens the CNW network that drives the reinforcement in the dry state. The mechanically adaptive behavior and a high elasticity of the wet materials are the basis for a shape-memory effect that uses water as the stimulus. Polarized Raman spectroscopy revealed that in the temporary shape, generated by stretching and drying water-swollen nanocomposites, the CNWs display a significant level of uniaxial orientation. |
Keywords | cellulose nanocrystals |
ANZSRC Field of Research 2020 | 340302. Macromolecular materials |
401609. Polymers and plastics | |
401807. Nanomaterials | |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | University of Fribourg, Switzerland |
University of Manchester, United Kingdom | |
Case Western Reserve University, United States |
Permalink -
https://research.usq.edu.au/item/z23x6/bioinspired-mechanically-adaptive-polymer-nanocomposites-with-water-activated-shape-memory-effect
51
total views0
total downloads1
views this month0
downloads this month