An agricultural drainage channel classification system for phosphorus management
Article
Article Title | An agricultural drainage channel classification system for phosphorus management |
---|---|
ERA Journal ID | 36361 |
Article Category | Article |
Authors | Shore, M. (Author), Jordan, P. (Author), Mellander, P.-E (Author), Kelly-Quinn, M. (Author) and Melland, A. R. (Author) |
Journal Title | Agriculture, Ecosystems and Environment |
Journal Citation | 199, pp. 207-215 |
Number of Pages | 9 |
Year | 2015 |
Publisher | Elsevier |
Place of Publication | Netherlands |
ISSN | 0167-8809 |
1873-2305 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.agee.2014.09.003 |
Web Address (URL) | http://www.sciencedirect.com/science/article/pii/S016788091400440X |
Abstract | In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of phosphorus (P) from upstream sources to receiving water-bodies. The magnitude of P attenuation and/or transfer within channels can vary considerably according to fine sediment retention and/or transfer processes. Fine sediment retention and/or transfer processes can, in turn, vary considerably according to channel physical characteristics. An understanding of channel physical characteristics, their effect on fine sediment retention/transfer and their spatial distribution, could be used to develop channel-specific management strategies for the reduction of downstream P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment, this study (i) characterised the surface channels in both catchments, (ii) classified the channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iii) considered P management strategies that are suited to each class. Results of the survey demonstrated that ditch dimensions were not closely related to their indicative flow volumes and were over-engineered, which likely reduces downstream P transfer. Net attenuation of fine sediment and associated P was predicted for 40% of the total channel length in the grassland catchment, compared to 13% of the total channel length in the arable catchment. Net transfer of fine sediment and associated P was predicted for 24% of the total channel length in the grassland catchment compared to 58% of the total channel length in the arable catchment. For eutrophication management in headwaters, periodic removal of fine sediment and maintenance of channel bank vegetation in net attenuating and transferring channels respectively would help to minimise P transfers from these catchments. |
Keywords | drainage channel; classification; agriculture; phosphorus; management |
ANZSRC Field of Research 2020 | 300201. Agricultural hydrology |
300202. Agricultural land management | |
410404. Environmental management | |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Teagasc, Ireland |
University of Ulster, United Kingdom | |
Teagasc Agriculture and Food Development Authority, Ireland | |
University College Dublin, Ireland | |
National Centre for Engineering in Agriculture | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q3y29/an-agricultural-drainage-channel-classification-system-for-phosphorus-management
1335
total views9
total downloads1
views this month0
downloads this month