Field calibrations of a long-term UV dosimeter for aquatic UVB exposures
Article
Article Title | Field calibrations of a long-term UV dosimeter for aquatic UVB exposures |
---|---|
ERA Journal ID | 2243 |
Article Category | Article |
Authors | Schouten, P. W. (Author), Parisi, A. V. (Author) and Turnbull, D. J. (Author) |
Journal Title | Journal of Photochemistry and Photobiology, B: Biology |
Journal Citation | 91 (2-3), pp. 108-116 |
Number of Pages | 9 |
Year | 2008 |
Publisher | Elsevier |
Place of Publication | Amsterdam, Netherlands |
ISSN | 1011-1344 |
1873-2682 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.jphotobiol.2008.02.004 |
Abstract | Various methodologies using a wide range of measurement systems have been employed previously in order to determine the amount of UV that could be incident upon various aquatic organisms in a number of different aquatic locales. Broadband meters and spectroradiometers have been employed extensively to take underwater measurements. However, these measurement campaigns are limited by the fact that radiometric equipment requires a human controller, constant power supply and regular calibrations and corrections in order to function properly. Dosimetric measurements have also been made underwater using two distinct types of dosimeter. The first type based on a synthetic chemical, like polysulphone, and the second type based on a biological matter, such as a DNA sample. The studies made using biological dosimeters have displayed very good results, however the time and skill necessary to make these types of dosimeters can outweigh their usefulness. The chemical dosimeters are easier to make and have also provided useable data, but only for short periods of exposure, usually no more than a day. Previous research has shown that Poly (2,6-dimethyl-1, 4-phenylene oxide) (PPO) has excellent potential for use as a long – term underwater solar UVB dosimeter. However, there is no documented methodology on how to properly calibrate the PPO dosimeter for water – based measurements and it has yet to be trialled in an outdoors marine environment, either real or simulated. This manuscript shows that calibrations obtained in air can not be transferred to calibrations made in water, calibrations made in one type of water can be employed for another type of water, but only within a certain range of spectral transmission and calibrations made at different depths in the same water type are interchangeable. It was also discovered that changing solar zenith angle had an effect upon calibration data. This research addressed these issues by formulating and developing a calibration methodology required for accurate underwater long – term UVB measurements in the field using the PPO film dosimeter. |
Keywords | solar UV; ultraviolet; aquatic; marine; calibration; dosimeter; filmdosimeter; PPO |
ANZSRC Field of Research 2020 | 410404. Environmental management |
370106. Atmospheric radiation | |
410305. Environmental marine biotechnology | |
Public Notes | File reproduced in accordance with the copyright policy of the publisher/author. |
Byline Affiliations | Department of Biological and Physical Sciences |
https://research.usq.edu.au/item/9yv22/field-calibrations-of-a-long-term-uv-dosimeter-for-aquatic-uvb-exposures
Download files
2433
total views394
total downloads0
views this month0
downloads this month