Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars
Article
Article Title | Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars |
---|---|
ERA Journal ID | 4188 |
Article Category | Article |
Authors | Maranan, G. (Author), Manalo, A. C. (Author), Benmokrane, B. (Author), Karunasena, W. (Author) and Mendis, P. (Author) |
Journal Title | Engineering Structures |
Journal Citation | 101, pp. 529-541 |
Number of Pages | 13 |
Year | 2015 |
Publisher | Elsevier |
Place of Publication | United Kingdom |
ISSN | 0141-0296 |
1873-7323 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.engstruct.2015.08.003 |
Web Address (URL) | http://www.sciencedirect.com/science/article/pii/S0141029615005027 |
Abstract | Geopolymer concrete reinforced with glass-fibre-reinforced polymer (GFRP) bars can provide a construction system with high durability, high sustainability, and adequate strength. Few studies deal with the combined use of these materials, and this has been the key motivation of this undertaking. In this study, the flexural strength and serviceability performance of the geopolymer concrete beams reinforced with GFRP bars were evaluated under a four-point static bending test. The parameters investigated were nominal bar diameter, reinforcement ratio, and anchorage system. Based on the experimental results, the bar diameter had no significant effect on the flexural performance of the beams. Generally, the serviceability performance of a beam is enhanced when the reinforcement ratio increases. The mechanical interlock and friction forces provided by the sand coating was adequate to secure an effective bond between the GFRP bars and the geopolymer concrete. Generally, the ACI 4401.R-06 and CSA S806-12 prediction equations underestimate the beam strength. The bending-moment capacity of the tested beams was higher than that of FRP-reinforced concrete beams from the previous studies. |
Keywords | Geopolymer concrete; glass-fiber-reinforced polymer (GFRP) bars; Flexural strength; Serviceability; Effective bond; FRP-reinforced concrete |
ANZSRC Field of Research 2020 | 400505. Construction materials |
400510. Structural engineering | |
Public Notes | File reproduced in accordance with the copyright policy of the publisher/author. |
Byline Affiliations | Centre of Excellence in Engineered Fibre Composites |
University of Sherbrooke, Canada | |
University of Melbourne | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q317z/evaluation-of-the-flexural-strength-and-serviceability-of-geopolymer-concrete-beams-reinforced-with-glass-fibre-reinforced-polymer-gfrp-bars
Download files
1765
total views1603
total downloads4
views this month3
downloads this month