Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand
Article
Article Title | Effect of Short Fibres in the Mechanical Properties of Geopolymer Mortar Containing Oil-Contaminated Sand |
---|---|
ERA Journal ID | 201391 |
Article Category | Article |
Authors | Abousnina, Rajab (Author), Alsalmi, Haifa Ibrahim (Author), Manalo, Allan (Author), Allister, Rochstad Lim (Author), Alajarmeh, Omar (Author), Ferdous, Wahid (Author) and Jlassi, Khouloud (Author) |
Journal Title | Polymers |
Journal Citation | 13 (17), pp. 1-21 |
Article Number | 3008 |
Number of Pages | 21 |
Year | 2021 |
Publisher | MDPI AG |
Place of Publication | Switzerland |
ISSN | 2073-4360 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/polym13173008 |
Web Address (URL) | https://www.mdpi.com/2073-4360/13/17/3008 |
Abstract | Sand contaminated with crude oil is becoming a major environmental issue around the world, while at the same time, fly ash generated by coal-fired power stations is having a detrimental effect on the environment. Previous studies showed that combining these two waste materials can result in an environmentally sustainable geopolymer concrete. Incorporating sand contaminated with crude oil up to a certain level (4% by weight) can improve the mechanical properties of the produced geopolymer concrete but beyond this level can have a detrimental effect on its compressive strength. To overcome this challenge, this study introduces short fibres to enhance the mechanical properties of geopolymer mortar containing fine sand contaminated with 6% by weight of light crude oil. Four types of short fibres, consisting of twisted polypropylene (PP) fibres, straight PP fibres, short glass fibres and steel fibres in different dosages (0.1, 0.2, 0.3, 0.4 and 0.5% by volume of geopolymer mortar) are considered. The optimum strength was obtained when straight PP fibres were used wherein increases of up to 39% and 74% of the compressive and tensile strength, respectively, of the geopolymer mortar were achieved. Moreover, a fibre dosage of 0.5% provided the highest enhancement in the mechanical properties of the geopolymer mortar with 6% crude oil contamination. This result indicates that the reduction in strength of geopolymer due to the addition of sand with 6% crude oil contamination can be regained by using short fibres, making this new material from wastes suitable for building and construction applications. |
Keywords | Contaminated sand; Fly ash; Geopolymer mortar; Mechanical properties; Short fibres |
ANZSRC Field of Research 2020 | 400510. Structural engineering |
400505. Construction materials | |
Byline Affiliations | Macquarie University |
Centre for Future Materials | |
TuffChem Environmental Services, Singapore | |
Qatar University, Qatar | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q6yw9/effect-of-short-fibres-in-the-mechanical-properties-of-geopolymer-mortar-containing-oil-contaminated-sand
Download files
115
total views88
total downloads1
views this month1
downloads this month