Effect of elevated in-service temperature on the mechanical properties and microstructure of particulate-filled epoxy polymers
Article
Article Title | Effect of elevated in-service temperature on the mechanical properties and microstructure of particulate-filled epoxy polymers |
---|---|
ERA Journal ID | 1691 |
Article Category | Article |
Authors | Mehrinejad Khotbehsara, Mojdeh (Author), Manalo, Allan (Author), Aravinthan, Thiru (Author), Reddy, Kakarla Raghava (Author), Ferdous, Wahid (Author), Wong, Hong (Author) and Nazari, Ali |
Journal Title | Polymer Degradation and Stability |
Journal Citation | 170, pp. 1-15 |
Article Number | 108994 |
Number of Pages | 15 |
Year | 2019 |
Publisher | Elsevier |
Place of Publication | United Kindom |
ISSN | 0141-3910 |
0144-2880 | |
1873-2321 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.polymdegradstab.2019.108994 |
Web Address (URL) | https://www.sciencedirect.com/science/article/pii/S0141391019303222 |
Abstract | In civil engineering applications, epoxy-based polymers are subject to different environmental conditions including in-service temperature, which might accelerate their degradation and limit their application ranges. Recently, different particulate fillers were introduced to enhance the mechanical properties and reduce the cost of epoxy-based polymers. This paper addresses the effect of in-service elevated temperature (from room temperature to 80 °C) in particulate-filled epoxy based resin containing up to 60% by volume of fire retardant and fly ash fillers through a deep understanding of the microstructure and analysis of their mechanistic response. An improvement in the retention of mechanical properties at in-service elevated temperature was achieved by increasing the percentages of fillers. The retention of compressive and split tensile strength at 80 °C for the mix containing 60% fillers was 72% and 52%, respectively, which was significantly higher than the neat epoxy. Thermo-dynamic analysis showed an increase in glass transition temperature with the inclusion of fillers, while these mixes also experienced less weight loss compared to neat epoxy, indicating better thermal stability. Scanning electron microscopy images showed the formation of dense microstructures for particulate-filled epoxy based resin at elevated temperatures. This indicates that the particulate filled epoxy resin exhibits better engineering properties at in-service elevated temperatures, increasing their durability and therefore their suitability for civil engineering applications. A simplified prediction equation based on power function was proposed and showed a strong correlation to the experimental compressive and splitting tensile strength at different levels of in-service elevated temperature. |
Keywords | Epoxy resin, Particulate fillers, In-service elevated temperature, Mechanical properties, Microstructure, Prediction model |
ANZSRC Field of Research 2020 | 400504. Construction engineering |
400599. Civil engineering not elsewhere classified | |
Public Notes | File reproduced in accordance with the copyright policy of the publisher/author. |
Byline Affiliations | Centre for Future Materials |
Imperial College London, United Kingdom | |
Swinburne University of Technology | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q58vz/effect-of-elevated-in-service-temperature-on-the-mechanical-properties-and-microstructure-of-particulate-filled-epoxy-polymers
Download files
Accepted Version
230
total views57
total downloads4
views this month1
downloads this month