The OATMEAL Survey. I. Low Stellar Obliquity in the Transiting Brown Dwarf System GPX-1
Article
Article Title | The OATMEAL Survey. I. Low Stellar Obliquity in the Transiting Brown Dwarf System GPX-1 |
---|---|
ERA Journal ID | 1048 |
Article Category | Article |
Authors | Giacalone, Steven, Dai, Fei, Zanazzi, J. J., Howard, Andrew W., Dressing, Courtney D., Winn, Joshua N., Rubenzahl, Ryan A., Carmichael, Theron W., Vowell, Noah, Kesseli, Aurora, Halverson, Samuel, Isaacson, Howard, Brodheim, Max, Deich, William, Fulton, Benjamin J., Gibson, Steven R., Hill, Grant M., Holden, Bradford, Householder, Aaron, Kaye, Stephen, Laher, Russ R., Lanclos, Kyle, Payne, Joel, Petigura, Erik A., Roy, Arpita, Schwab, Christian, Shaum, Abby P., Sirk, Martin M., Smith, Chris, Stefánsson, Guðmundur, Walawende, Josh, Wang, Sharon X., Weiss, Lauren M. and Yeh, Sherry |
Journal Title | The Astronomical Journal |
Journal Citation | 168 (5) |
Article Number | 189 |
Number of Pages | 8 |
Year | 2024 |
Publisher | IOP Publishing |
Place of Publication | United States |
ISSN | 0004-6256 |
1538-3881 | |
Digital Object Identifier (DOI) | https://doi.org/10.3847/1538-3881/ad785a |
Web Address (URL) | https://iopscience.iop.org/article/10.3847/1538-3881/ad785a |
Abstract | We introduce the OATMEAL survey, an effort to measure the obliquities of stars with transiting brown dwarf companions. We observed a transit of the close-in (Porb = 1.74 days) brown dwarf GPX-1 b using the Keck Planet Finder spectrograph to measure the sky-projected angle between its orbital axis and the spin axis of its early F-type host star (λ). We measured λ = 6fdg9 ± 10fdg0, suggesting an orbit that is prograde and well aligned with the stellar equator. Hot Jupiters around early F stars are frequently found to have highly misaligned orbits, with polar and retrograde orbits being commonplace. It has been theorized that these misalignments stem from dynamical interactions, such as von Zeipel–Kozai–Lidov cycles, and are retained over long timescales due to weak tidal dissipation in stars with radiative envelopes. By comparing GPX-1 to similar systems under the frameworks of different tidal evolution theories, we argued that the rate of tidal dissipation is too slow to have re-aligned the system. This suggests that GPX-1 may have arrived at its close-in orbit via coplanar high-eccentricity migration or migration through an aligned protoplanetary disk. Our result for GPX-1 is one of few measurements of the obliquity of a star with a transiting brown dwarf. By enlarging the number of such measurements and comparing them with hot-Jupiter systems, we will more clearly discern the differences between the mechanisms that dictate the formation and evolution of both classes of objects. |
Keywords | Star-planet interactions; Brown dwarfs; Close binary stars; Exoplanet dynamics; Exoplanet migration |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 5201. Applied and developmental psychology |
Byline Affiliations | California Institute of Technology (Caltech), United States |
University of Hawaii, United States | |
University of California Berkeley, United States | |
Princeton University, United States | |
Center for Astrophysics Harvard and Smithsonian, United States | |
Michigan State University, United States | |
Jet Propulsion Laboratory, United States | |
Centre for Astrophysics | |
W. M. Keck Observatory, United States | |
University of California Santa Cruz, United States | |
Caltech Optical Observatories, United States | |
Massachusetts Institute of Technology, United States | |
NASA Exoplanet Science Institute, United States | |
University of California Los Angeles, United States | |
Astrophysics & Space Institute, United States | |
Macquarie University | |
University of Amsterdam, Netherlands | |
Tsinghua University, China | |
University of Notre Dame, United States |
https://research.usq.edu.au/item/zv06w/the-oatmeal-survey-i-low-stellar-obliquity-in-the-transiting-brown-dwarf-system-gpx-1
Download files
18
total views0
total downloads9
views this month0
downloads this month