Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles

Article


Faraji Rad, Zahra, Prewett, Philip D. and Davies, Graham J.. 2022. "Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles." Additive Manufacturing. 56, pp. 1-14. https://doi.org/10.1016/j.addma.2022.102953
Article Title

Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles

ERA Journal ID210040
Article CategoryArticle
AuthorsFaraji Rad, Zahra (Author), Prewett, Philip D. (Author) and Davies, Graham J. (Author)
Journal TitleAdditive Manufacturing
Journal Citation56, pp. 1-14
Article Number102953
Number of Pages14
Year2022
PublisherElsevier
Place of PublicationNetherlands
ISSN2214-7810
2214-8604
Digital Object Identifier (DOI)https://doi.org/10.1016/j.addma.2022.102953
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S2214860422003475
Abstract

Laser-based additive manufacturing methods have been rapidly developed in recent years and it is anticipated that this new generation of microfabrication tools will dominate the market in the near future. Three-dimensional (3D) microprinting based on two-photon polymerization allows manufacturing of complex microstructures with a resolution down to hundreds of nanometers. In recent years, the technology has been used for the manufacturing of a variety of nano- and micro-sized features such as microfluidic devices, photonics, micro-optics, and microneedle arrays. Microneedles have been mainly studied for transdermal drug delivery of therapeutic agents across the skin and withdrawing bio samples for point-of-care (POC) diagnostics. With significant development being made, it is now possible to 3D print complex microneedle structures directly from computer-aided design (CAD) models by the two-photon direct laser writing technique. However, selecting the optimal parameters and investigating the possible arrangement for the print process often involves intensive optimization process and testing. Herein we report on fabrication of highly detailed microneedles using the two-photon direct laser writing process with a discussion of optimization and parameter selection for microprinting tall microneedles with side-channels and other complex designs. Due to the long printing time, this manufacturing process is currently best suited to print master microneedles. Therefore, we further demonstrate the replication capabilities of the master microneedles by the soft embossing process. Additionally, the mechanical characteristics and insertion force of the microneedle replicas are investigated.

Keywords3D laser lithography; 3D printing; Drug delivery; Microneedles; Point-of-care diagnostics; Two-photon polymerization
ANZSRC Field of Research 2020400308. Medical devices
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsSchool of Engineering
University of Birmingham, United Kingdom
University of New South Wales
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q78y7/parametric-optimization-of-two-photon-direct-laser-writing-process-for-manufacturing-polymeric-microneedles

  • 80
    total views
  • 2
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Influence of Low-Frequency Vibration and Skin Strain on Insertion Mechanics and Drug Diffusion of PVA/PVP Dissolving Microneedles
Ebrahiminejad, Vahid, Malek-Khatabi, Atefeh and Faraji Rad, Zahra. 2024. "Influence of Low-Frequency Vibration and Skin Strain on Insertion Mechanics and Drug Diffusion of PVA/PVP Dissolving Microneedles." Advanced Materials Technologies. 9 (4). https://doi.org/10.1002/admt.202301272
Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors
Saifullah, Khaled Mohammed and Faraji Rad, Zahra. 2023. "Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors." Advanced Materials Interfaces. 10 (10). https://doi.org/10.1002/admi.202201763
The role of microneedles in the healing of chronic wounds
Ghiyasi, Yasaman, Prewett, Philip D, Davies, Graham J and Faraji Rad, Zahra. 2023. "The role of microneedles in the healing of chronic wounds." International Journal of Pharmaceutics. 641. https://doi.org/10.1016/j.ijpharm.2023.123087
Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery
Malek-Khatabi, A., Razavi, M.S., Abdollahi, A., Rahimzadeghan, M., Moammeri, F., Sheikhi, M., Tavakoli, M., Rad-Malekshahi, M. and Faraji Rad, Z.. 2023. "Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery." Biomaterials Science. 11 (16), pp. 5390-5409. https://doi.org/10.1039/D3BM00795B
Microneedle patches – the future of drug delivery and vaccination?
Faraji Rad, Zahra, Prewett, Philip D. and Davies, Davies. 2023. "Microneedle patches – the future of drug delivery and vaccination?" Beilstein Journal of Nanotechnology. 14, pp. 494-495. https://doi.org/10.3762/bjnano.14.40
Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and its Applications as Substrates for Humidity Sensors
Liu, Lei, Xu, Xiaodong, Zhu, Menghe, Cui, Xihua, Feng, Jiabing, Faraji Rad, Zahra, Wang, Hao and Song, Pingan. 2023. "Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and its Applications as Substrates for Humidity Sensors." Advanced Materials Technologies. https://doi.org/10.1002/admt.202201414
Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery
Malek-Khatabi, Atefeh, Faraji Rad, Zahra, Rad-Malekshahi, Mazda and Akbarijavar, Hamid. 2023. "Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery." Materials Letters. 330, pp. 1-6. https://doi.org/10.1016/j.matlet.2022.133328
Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives
Faraji Rad, Zahra. 2023. "Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives." Advanced Engineering Materials. 25 (4). https://doi.org/10.1002/adem.202201194
Fabrication and testing of polymer microneedles for transdermal drug delivery
Ebrahiminejad, Vahid, Faraji Rad, Zahra, Prewett, Philip D. and Davies, Graham J.. 2022. "Fabrication and testing of polymer microneedles for transdermal drug delivery." Beilstein Journal of Nanotechnology. 13, pp. 629-640. https://doi.org/10.3762/bjnano.13.55
Design, Development, and Testing of Polymeric Microblades: A Novel Design of Microneedles for Biomedical Applications
Ebrahiminejad, Vahid and Faraji Rad, Zahra. 2022. "Design, Development, and Testing of Polymeric Microblades: A Novel Design of Microneedles for Biomedical Applications." Advanced Materials Interfaces. 9 (29). https://doi.org/10.1002/admi.202201115
Microneedle Arrays for Drug Delivery and Diagnostics: Toward an Optimized Design, Reliable Insertion, and Penetration
Ebrahiminejad, Vahid, Prewett, Philip D., Davies, Graham J. and Faraji Rad, Zahra. 2022. "Microneedle Arrays for Drug Delivery and Diagnostics: Toward an Optimized Design, Reliable Insertion, and Penetration." Advanced Materials Interfaces. 9 (6), pp. 1-26. https://doi.org/10.1002/admi.202101856
Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques." Manufacturing Letters. 30, pp. 39-43. https://doi.org/10.1016/j.mfglet.2021.10.007
High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays." Microsystems and Nanoengineering. 7 (1), pp. 1-17. https://doi.org/10.1038/s41378-021-00298-3
An overview of microneedle applications, materials, and fabrication methods
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "An overview of microneedle applications, materials, and fabrication methods." Beilstein Journal of Nanotechnology. 12, pp. 1034-1046. https://doi.org/10.3762/bjnano.12.77
High-fidelity replication of thermoplastic microneedles with open microfluidic channels
Faraji Rad, Zahra, Nordon, Robert E., Anthony, Carl J., Bilston, Lynne, Prewett, Philip D., Arns, Ji-Youn, Arns, Christoph H., Zhang, Liangchi and Davies, Graham J.. 2017. "High-fidelity replication of thermoplastic microneedles with open microfluidic channels." Microsystems and Nanoengineering. 3, pp. 1-11. https://doi.org/10.1038/micronano.2017.34
Carbon-based nanostructures for cancer therapy and drug delivery applications
Bagheri, Babak, Surwase, Sachin S., Lee, Su Sam, Park, Heewon, Faraji Rad, Zahra, Trevaskis, Natalie L. and Kim, Yeu-Chun. 2022. "Carbon-based nanostructures for cancer therapy and drug delivery applications." Journal of Materials Chemistry B. 10 (48), pp. 9944-9967. https://doi.org/10.1039/d2tb01741e
A roof cavability classification system and its use for estimation of main caving interval in longwall mining
Mohammadi, Sodjad, Ataei, Mohammad, Kakaie, Reza, Mirzaghorbanali, Ali, Faraji Rad, Zahra and Aziz, Naj. 2020. "A roof cavability classification system and its use for estimation of main caving interval in longwall mining." Aziz, Naj and Kininmonth, Bob (ed.) 2020 Coal Operators' Conference. Wollongong, Australia 18 - 20 Feb 2019 Wollongong, Australia.
Microfluidic devices and fabrication
Faraji Rad, Zahra, Nordon, Robert, Davies, Graham, Anthony, Carl john and Prewett, Philip. 2020. Microfluidic devices and fabrication. 10850082