Micro-vibration assisted dual-layer spiral microneedles to rapidly extract dermal interstitial fluid for minimally invasive detection of glucose

Article


Saifullah, Khaled Mohammed, Mushtaq, Asim, Azarikhah, Pouria, Prewett, Philip D., Davies, Graham J. and Faraji Rad, Zahra. 2025. "Micro-vibration assisted dual-layer spiral microneedles to rapidly extract dermal interstitial fluid for minimally invasive detection of glucose." Microsystems and Nanoengineering. 11 (1). https://doi.org/10.1038/s41378-024-00850-x
Article Title

Micro-vibration assisted dual-layer spiral microneedles to rapidly extract dermal interstitial fluid for minimally invasive detection of glucose

ERA Journal ID213691
Article CategoryArticle
AuthorsSaifullah, Khaled Mohammed, Mushtaq, Asim, Azarikhah, Pouria, Prewett, Philip D., Davies, Graham J. and Faraji Rad, Zahra
Journal TitleMicrosystems and Nanoengineering
Journal Citation11 (1)
Article Number3
Number of Pages18
Year2025
PublisherNature Publishing Group
Place of PublicationUnited Kingdom
ISSN2055-7434
2096-1030
Digital Object Identifier (DOI)https://doi.org/10.1038/s41378-024-00850-x
Web Address (URL)https://www.nature.com/articles/s41378-024-00850-x
AbstractVarious hydrogels have been explored to create minimally invasive microneedles (MNs) to extract interstitial fluid (ISF). However, current methods are time-consuming and typically require 10–15 min to extract 3–5 mg of ISF. This study introduces two spiral-shaped swellable MN arrays: one made of gelatin methacryloyl (GelMA) and polyvinyl alcohol (PVA), and the other incorporating a combination of PVA, polyvinylpyrrolidone (PVP), and hyaluronic acid (HA) for fast ISF extraction. These MN arrays demonstrated a rapid swelling ratio of 560 ± 79.6% and 370 ± 34.1% in artificial ISF within 10 min, respectively. Additionally, this study proposes a novel method that combines MNs with a custom-designed Arduino-based applicator vibrating at frequency ranges (50–100 Hz) to improve skin penetration efficiency, thereby enhancing the uptake of ISF in ex vivo. This dynamic combination enables GelMA/PVA MNs to rapidly uptake 6.41 ± 1.01 mg of ISF in just 5 min, while PVA/PVP/HA MNs extract 5.38 ± 0.77 mg of ISF within the same timeframe. To validate the capability of the MNs to recover glucose as the target biomarker, a mild heating procedure is used, followed by determining glucose concentration using a d-glucose content assay kit. The efficient extraction of ISF and glucose detection capabilities of the spiral MNs suggest their potential for rapid and minimally invasive biomarker sensing.
Related Output
Is part ofMicroneedle-based biosensor for rapid interstitial fluid extraction and on-site glucose detection
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020400302. Biomaterials
Public Notes

This article is part of a UniSQ Thesis by publication. See Related Output.

Byline AffiliationsSchool of Engineering
Centre for Future Materials
University of Birmingham, United Kingdom
Oxacus, United Kingdom
University of New South Wales
Permalink -

https://research.usq.edu.au/item/zx19q/micro-vibration-assisted-dual-layer-spiral-microneedles-to-rapidly-extract-dermal-interstitial-fluid-for-minimally-invasive-detection-of-glucose

Download files


Published Version
s41378-024-00850-x.pdf
License: CC BY 4.0
File access level: Anyone

  • 1
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Microneedle-based biosensor for rapid interstitial fluid extraction and on-site glucose detection
Saifullah, Khaled Mohammed. 2025. Microneedle-based biosensor for rapid interstitial fluid extraction and on-site glucose detection. PhD by Publication Doctor of Philosophy. University of Southern Queensland. https://doi.org/10.26192/zyw11
Engineering amine-modified ammonium polyphosphate for enhancing flame retardancy and smoke suppression of vinyl ester resin
Chu, Tao, Lu, Yixia, Hou, Boyou, Zhou, Zhezhe, Yang, Qingshan, Guo, Yong, Jafari, Pooya, Mushtaq, Asim, Zeng, Xuesen, Huo, Siqi and Song, Pingan. 2025. "Engineering amine-modified ammonium polyphosphate for enhancing flame retardancy and smoke suppression of vinyl ester resin." Construction and Building Materials. 475. https://doi.org/10.1016/j.conbuildmat.2025.141174
Synthesis-free swellable hydrogel microneedles for rapid interstitial fluid extraction and on-site glucose detection via an electrochemical biosensor system
Saifullah, Khaled Mohammed, Azarikhah, Pouria and Faraji Rad, Zahra Faraji. 2025. "Synthesis-free swellable hydrogel microneedles for rapid interstitial fluid extraction and on-site glucose detection via an electrochemical biosensor system." Materials Today Chemistry. 45. https://doi.org/10.1016/j.mtchem.2025.102661
Engineering Approaches for Exosome Cargo Loading and Targeted Delivery: Biological versus Chemical Perspectives
Ahmed, Waqas, Mushtaq, Asim, Ali, Shahzad, Khan, Nawaz, Liang, Yujie and Duan, Li. 2024. "Engineering Approaches for Exosome Cargo Loading and Targeted Delivery: Biological versus Chemical Perspectives." ACS Biomaterials Science and Engineering. 10 (10), pp. 5960-5976. https://doi.org/10.1021/acsbiomaterials.4c00856
Mechanics of dissolving microneedles insertion into the skin: Finite element and experimental analyses
Babapour, Fatemeh, Faraji Rad, Zahra and Ganji, Fariba. 2024. "Mechanics of dissolving microneedles insertion into the skin: Finite element and experimental analyses." Journal of Applied Polymer Science. 141 (38). https://doi.org/10.1002/app.55973
The advantages of microneedle patches compared to conventional needle-based drug delivery and biopsy devices in medicine
Reinke, Alissa, Whiteside, Eliza J, Windus, Louisa, Desai, Devang, Stehr, Emma and Faraji Rad, Zahra. 2024. "The advantages of microneedle patches compared to conventional needle-based drug delivery and biopsy devices in medicine." Biomedical Engineering Advances. 8. https://doi.org/10.1016/j.bea.2024.100127
Influence of Low-Frequency Vibration and Skin Strain on Insertion Mechanics and Drug Diffusion of PVA/PVP Dissolving Microneedles
Ebrahiminejad, Vahid, Malek-Khatabi, Atefeh and Faraji Rad, Zahra. 2024. "Influence of Low-Frequency Vibration and Skin Strain on Insertion Mechanics and Drug Diffusion of PVA/PVP Dissolving Microneedles." Advanced Materials Technologies. 9 (4). https://doi.org/10.1002/admt.202301272
Botulinum toxin A dissolving microneedles for hyperhidrosis treatment: design, formulation and in vivo evaluation
Malek-Khatabi, Atefeh, Rad-Malekshahi, Mazda, Shafiei, Morvarid, Sharifi, Fatemeh, Motasadizadeh, Hamidreza, Ebrahiminejad, Vahid, Rad-Malekshahi, Mazdak, Akbarijavar, Hamid and Faraji Rad, Zahra. 2023. "Botulinum toxin A dissolving microneedles for hyperhidrosis treatment: design, formulation and in vivo evaluation." Biomaterials Science. 11 (24), pp. 7784-7804. https://doi.org/10.1039/d3bm01301d
The role of microneedles in the healing of chronic wounds
Ghiyasi, Yasaman, Prewett, Philip D, Davies, Graham J and Faraji Rad, Zahra. 2023. "The role of microneedles in the healing of chronic wounds." International Journal of Pharmaceutics. 641. https://doi.org/10.1016/j.ijpharm.2023.123087
Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery
Malek-Khatabi, A., Razavi, M.S., Abdollahi, A., Rahimzadeghan, M., Moammeri, F., Sheikhi, M., Tavakoli, M., Rad-Malekshahi, M. and Faraji Rad, Z.. 2023. "Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery." Biomaterials Science. 11 (16), pp. 5390-5409. https://doi.org/10.1039/D3BM00795B
Microneedle patches – the future of drug delivery and vaccination?
Faraji Rad, Zahra, Prewett, Philip D. and Davies, Davies. 2023. "Microneedle patches – the future of drug delivery and vaccination?" Beilstein Journal of Nanotechnology. 14, pp. 494-495. https://doi.org/10.3762/bjnano.14.40
Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors
Saifullah, Khaled Mohammed and Faraji Rad, Zahra. 2023. "Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors." Advanced Materials Interfaces. 10 (10). https://doi.org/10.1002/admi.202201763
Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and its Applications as Substrates for Humidity Sensors
Liu, Lei, Xu, Xiaodong, Zhu, Menghe, Cui, Xihua, Feng, Jiabing, Faraji Rad, Zahra, Wang, Hao and Song, Pingan. 2023. "Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and its Applications as Substrates for Humidity Sensors." Advanced Materials Technologies. https://doi.org/10.1002/admt.202201414
Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery
Malek-Khatabi, Atefeh, Faraji Rad, Zahra, Rad-Malekshahi, Mazda and Akbarijavar, Hamid. 2023. "Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery." Materials Letters. 330, pp. 1-6. https://doi.org/10.1016/j.matlet.2022.133328
Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives
Faraji Rad, Zahra. 2023. "Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives." Advanced Engineering Materials. 25 (4). https://doi.org/10.1002/adem.202201194
Fabrication and testing of polymer microneedles for transdermal drug delivery
Ebrahiminejad, Vahid, Faraji Rad, Zahra, Prewett, Philip D. and Davies, Graham J.. 2022. "Fabrication and testing of polymer microneedles for transdermal drug delivery." Beilstein Journal of Nanotechnology. 13, pp. 629-640. https://doi.org/10.3762/bjnano.13.55
Design, Development, and Testing of Polymeric Microblades: A Novel Design of Microneedles for Biomedical Applications
Ebrahiminejad, Vahid and Faraji Rad, Zahra. 2022. "Design, Development, and Testing of Polymeric Microblades: A Novel Design of Microneedles for Biomedical Applications." Advanced Materials Interfaces. 9 (29). https://doi.org/10.1002/admi.202201115
Microneedle Arrays for Drug Delivery and Diagnostics: Toward an Optimized Design, Reliable Insertion, and Penetration
Ebrahiminejad, Vahid, Prewett, Philip D., Davies, Graham J. and Faraji Rad, Zahra. 2022. "Microneedle Arrays for Drug Delivery and Diagnostics: Toward an Optimized Design, Reliable Insertion, and Penetration." Advanced Materials Interfaces. 9 (6), pp. 1-26. https://doi.org/10.1002/admi.202101856
Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles
Faraji Rad, Zahra, Prewett, Philip D. and Davies, Graham J.. 2022. "Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles." Additive Manufacturing. 56, pp. 1-14. https://doi.org/10.1016/j.addma.2022.102953
Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques." Manufacturing Letters. 30, pp. 39-43. https://doi.org/10.1016/j.mfglet.2021.10.007
High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays." Microsystems and Nanoengineering. 7 (1), pp. 1-17. https://doi.org/10.1038/s41378-021-00298-3
An overview of microneedle applications, materials, and fabrication methods
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "An overview of microneedle applications, materials, and fabrication methods." Beilstein Journal of Nanotechnology. 12, pp. 1034-1046. https://doi.org/10.3762/bjnano.12.77
High-fidelity replication of thermoplastic microneedles with open microfluidic channels
Faraji Rad, Zahra, Nordon, Robert E., Anthony, Carl J., Bilston, Lynne, Prewett, Philip D., Arns, Ji-Youn, Arns, Christoph H., Zhang, Liangchi and Davies, Graham J.. 2017. "High-fidelity replication of thermoplastic microneedles with open microfluidic channels." Microsystems and Nanoengineering. 3, pp. 1-11. https://doi.org/10.1038/micronano.2017.34
Carbon-based nanostructures for cancer therapy and drug delivery applications
Bagheri, Babak, Surwase, Sachin S., Lee, Su Sam, Park, Heewon, Faraji Rad, Zahra, Trevaskis, Natalie L. and Kim, Yeu-Chun. 2022. "Carbon-based nanostructures for cancer therapy and drug delivery applications." Journal of Materials Chemistry B. 10 (48), pp. 9944-9967. https://doi.org/10.1039/d2tb01741e
A roof cavability classification system and its use for estimation of main caving interval in longwall mining
Mohammadi, Sodjad, Ataei, Mohammad, Kakaie, Reza, Mirzaghorbanali, Ali, Faraji Rad, Zahra and Aziz, Naj. 2020. "A roof cavability classification system and its use for estimation of main caving interval in longwall mining." Aziz, Naj and Kininmonth, Bob (ed.) 2020 Coal Operators' Conference. Wollongong, Australia 18 - 20 Feb 2019 Wollongong, Australia.
Microfluidic devices and fabrication
Faraji Rad, Zahra, Nordon, Robert, Davies, Graham, Anthony, Carl john and Prewett, Philip. 2020. Microfluidic devices and fabrication. 10850082