Design, Development, and Testing of Polymeric Microblades: A Novel Design of Microneedles for Biomedical Applications

Article


Ebrahiminejad, Vahid and Faraji Rad, Zahra. 2022. "Design, Development, and Testing of Polymeric Microblades: A Novel Design of Microneedles for Biomedical Applications." Advanced Materials Interfaces. 9 (29). https://doi.org/10.1002/admi.202201115
Article Title

Design, Development, and Testing of Polymeric Microblades: A Novel Design of Microneedles for Biomedical Applications

ERA Journal ID210043
Article CategoryArticle
AuthorsEbrahiminejad, Vahid (Author) and Faraji Rad, Zahra (Author)
Journal TitleAdvanced Materials Interfaces
Journal Citation9 (29)
Article Number2201115
Number of Pages16
Year2022
PublisherJohn Wiley & Sons
Place of PublicationGermany
ISSN2196-7350
Digital Object Identifier (DOI)https://doi.org/10.1002/admi.202201115
Web Address (URL)https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202201115
Abstract

Conventional microneedles (MNs) are designed as an array of micrometer-sized projections that can painlessly penetrate the skin. Fabrication of MN arrays can be costly and time-consuming; additionally, full penetration of an array of MNs with ten to thousands of projections into the skin may not be achievable. This paper reports a new design of MNs known as microblades (MBs) which consist of a singular microstructure. The single integrated design of the MBs reduces the fabrication cost and time, facilitates more effective penetration, and may pave the way for the scale-up manufacturing of MN devices. Different designs of MBs are fabricated by two-photon polym-erization technique, followed by polydimethylsiloxane micromolding and soft embossing to create replicas. The mechanical integrity of the designs is deter-mined by a series of compression tests. Skin insertion and drug diffusion studies are conducted using a custom-made applicator to insert the MBs into the porcine abdominal skin to demonstrate delivery of fluorescein tracer. MBs insertion and penetration capabilities and the diffusion of a model drug into a multi-layered human skin are demonstrated using finite element analysis and 3D diffusion models. The results demonstrate the functional capabilities of the MBs as an alternative to MN arrays.

Keywordsdrug delivery, microblade, micromolding, microneedle, two-photon polymerization
Related Output
Is part ofDesign and fabrication of microneedle patches, microblades and featured insertion applicator for optimising transdermal drug delivery
ANZSRC Field of Research 2020401705. Microelectromechanical systems (MEMS)
400303. Biomechanical engineering
401801. Micro- and nanosystems
400308. Medical devices
400302. Biomaterials
Public Notes

This article is part of a UniSQ Thesis by publication. See Related Output.

Byline AffiliationsSchool of Engineering
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q7qy4/design-development-and-testing-of-polymeric-microblades-a-novel-design-of-microneedles-for-biomedical-applications

  • 73
    total views
  • 65
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Mechanics of dissolving microneedles insertion into the skin: Finite element and experimental analyses
Babapour, Fatemeh, Faraji Rad, Zahra and Ganji, Fariba. 2024. "Mechanics of dissolving microneedles insertion into the skin: Finite element and experimental analyses." Journal of Applied Polymer Science. 141 (38). https://doi.org/10.1002/app.55973
The advantages of microneedle patches compared to conventional needle-based drug delivery and biopsy devices in medicine
Reinke, Alissa, Whiteside, Eliza J, Windus, Louisa, Desai, Devang, Stehr, Emma and Faraji Rad, Zahra. 2024. "The advantages of microneedle patches compared to conventional needle-based drug delivery and biopsy devices in medicine." Biomedical Engineering Advances. 8. https://doi.org/10.1016/j.bea.2024.100127
Influence of Low-Frequency Vibration and Skin Strain on Insertion Mechanics and Drug Diffusion of PVA/PVP Dissolving Microneedles
Ebrahiminejad, Vahid, Malek-Khatabi, Atefeh and Faraji Rad, Zahra. 2024. "Influence of Low-Frequency Vibration and Skin Strain on Insertion Mechanics and Drug Diffusion of PVA/PVP Dissolving Microneedles." Advanced Materials Technologies. 9 (4). https://doi.org/10.1002/admt.202301272
Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors
Saifullah, Khaled Mohammed and Faraji Rad, Zahra. 2023. "Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors." Advanced Materials Interfaces. 10 (10). https://doi.org/10.1002/admi.202201763
Botulinum toxin A dissolving microneedles for hyperhidrosis treatment: design, formulation and in vivo evaluation
Malek-Khatabi, Atefeh, Rad-Malekshahi, Mazda, Shafiei, Morvarid, Sharifi, Fatemeh, Motasadizadeh, Hamidreza, Ebrahiminejad, Vahid, Rad-Malekshahi, Mazdak, Akbarijavar, Hamid and Faraji Rad, Zahra. 2023. "Botulinum toxin A dissolving microneedles for hyperhidrosis treatment: design, formulation and in vivo evaluation." Biomaterials Science. 11 (24), pp. 7784-7804. https://doi.org/10.1039/d3bm01301d
The role of microneedles in the healing of chronic wounds
Ghiyasi, Yasaman, Prewett, Philip D, Davies, Graham J and Faraji Rad, Zahra. 2023. "The role of microneedles in the healing of chronic wounds." International Journal of Pharmaceutics. 641. https://doi.org/10.1016/j.ijpharm.2023.123087
Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery
Malek-Khatabi, A., Razavi, M.S., Abdollahi, A., Rahimzadeghan, M., Moammeri, F., Sheikhi, M., Tavakoli, M., Rad-Malekshahi, M. and Faraji Rad, Z.. 2023. "Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery." Biomaterials Science. 11 (16), pp. 5390-5409. https://doi.org/10.1039/D3BM00795B
Microneedle patches – the future of drug delivery and vaccination?
Faraji Rad, Zahra, Prewett, Philip D. and Davies, Davies. 2023. "Microneedle patches – the future of drug delivery and vaccination?" Beilstein Journal of Nanotechnology. 14, pp. 494-495. https://doi.org/10.3762/bjnano.14.40
Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and its Applications as Substrates for Humidity Sensors
Liu, Lei, Xu, Xiaodong, Zhu, Menghe, Cui, Xihua, Feng, Jiabing, Faraji Rad, Zahra, Wang, Hao and Song, Pingan. 2023. "Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and its Applications as Substrates for Humidity Sensors." Advanced Materials Technologies. https://doi.org/10.1002/admt.202201414
Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery
Malek-Khatabi, Atefeh, Faraji Rad, Zahra, Rad-Malekshahi, Mazda and Akbarijavar, Hamid. 2023. "Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery." Materials Letters. 330, pp. 1-6. https://doi.org/10.1016/j.matlet.2022.133328
Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives
Faraji Rad, Zahra. 2023. "Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives." Advanced Engineering Materials. 25 (4). https://doi.org/10.1002/adem.202201194
Fabrication and testing of polymer microneedles for transdermal drug delivery
Ebrahiminejad, Vahid, Faraji Rad, Zahra, Prewett, Philip D. and Davies, Graham J.. 2022. "Fabrication and testing of polymer microneedles for transdermal drug delivery." Beilstein Journal of Nanotechnology. 13, pp. 629-640. https://doi.org/10.3762/bjnano.13.55
Microneedle Arrays for Drug Delivery and Diagnostics: Toward an Optimized Design, Reliable Insertion, and Penetration
Ebrahiminejad, Vahid, Prewett, Philip D., Davies, Graham J. and Faraji Rad, Zahra. 2022. "Microneedle Arrays for Drug Delivery and Diagnostics: Toward an Optimized Design, Reliable Insertion, and Penetration." Advanced Materials Interfaces. 9 (6), pp. 1-26. https://doi.org/10.1002/admi.202101856
Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles
Faraji Rad, Zahra, Prewett, Philip D. and Davies, Graham J.. 2022. "Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles." Additive Manufacturing. 56, pp. 1-14. https://doi.org/10.1016/j.addma.2022.102953
Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques." Manufacturing Letters. 30, pp. 39-43. https://doi.org/10.1016/j.mfglet.2021.10.007
High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays." Microsystems and Nanoengineering. 7 (1), pp. 1-17. https://doi.org/10.1038/s41378-021-00298-3
An overview of microneedle applications, materials, and fabrication methods
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "An overview of microneedle applications, materials, and fabrication methods." Beilstein Journal of Nanotechnology. 12, pp. 1034-1046. https://doi.org/10.3762/bjnano.12.77
High-fidelity replication of thermoplastic microneedles with open microfluidic channels
Faraji Rad, Zahra, Nordon, Robert E., Anthony, Carl J., Bilston, Lynne, Prewett, Philip D., Arns, Ji-Youn, Arns, Christoph H., Zhang, Liangchi and Davies, Graham J.. 2017. "High-fidelity replication of thermoplastic microneedles with open microfluidic channels." Microsystems and Nanoengineering. 3, pp. 1-11. https://doi.org/10.1038/micronano.2017.34
Carbon-based nanostructures for cancer therapy and drug delivery applications
Bagheri, Babak, Surwase, Sachin S., Lee, Su Sam, Park, Heewon, Faraji Rad, Zahra, Trevaskis, Natalie L. and Kim, Yeu-Chun. 2022. "Carbon-based nanostructures for cancer therapy and drug delivery applications." Journal of Materials Chemistry B. 10 (48), pp. 9944-9967. https://doi.org/10.1039/d2tb01741e
A roof cavability classification system and its use for estimation of main caving interval in longwall mining
Mohammadi, Sodjad, Ataei, Mohammad, Kakaie, Reza, Mirzaghorbanali, Ali, Faraji Rad, Zahra and Aziz, Naj. 2020. "A roof cavability classification system and its use for estimation of main caving interval in longwall mining." Aziz, Naj and Kininmonth, Bob (ed.) 2020 Coal Operators' Conference. Wollongong, Australia 18 - 20 Feb 2019 Wollongong, Australia.
Potential Application of Wire Woven Mesh as Tower Packing Support-Computational Approach
Ebrahiminejad, Vahid and Sharifian Barforoush, Ahmad. 2020. "Potential Application of Wire Woven Mesh as Tower Packing Support-Computational Approach." 22nd International Conference on Composite Materials (ICCM-22). Melbourne, Australia 11 - 16 Aug 2019 Australia.
Microfluidic devices and fabrication
Faraji Rad, Zahra, Nordon, Robert, Davies, Graham, Anthony, Carl john and Prewett, Philip. 2020. Microfluidic devices and fabrication. 10850082