Age-Dependent Finite Element Analysis of Microneedle Penetration into Human Skin: Influence of Insertion Velocity, and Microneedle's Geometry and Material

Article


Azarikhah, Pouria, Saifullah, Khaled Mohammed and Faraji Rad, Zahra. 2025. "Age-Dependent Finite Element Analysis of Microneedle Penetration into Human Skin: Influence of Insertion Velocity, and Microneedle's Geometry and Material." Macromolecular Materials and Engineering. https://doi.org/10.1002/mame.202500123
Article Title

Age-Dependent Finite Element Analysis of Microneedle Penetration into Human Skin: Influence of Insertion Velocity, and Microneedle's Geometry and Material

ERA Journal ID1682
Article CategoryArticle
AuthorsAzarikhah, Pouria, Saifullah, Khaled Mohammed and Faraji Rad, Zahra
Journal TitleMacromolecular Materials and Engineering
Article Numbere00123
Number of Pages19
Year2025
PublisherJohn Wiley & Sons
Place of PublicationGermany
ISSN1438-7492
1439-2054
Digital Object Identifier (DOI)https://doi.org/10.1002/mame.202500123
Web Address (URL)https://onlinelibrary.wiley.com/doi/full/10.1002/mame.202500123
Abstract

Microneedles offer a minimally invasive alternative to hypodermic needles for drug delivery and point-of-care diagnostics. Previous studies on microneedle insertion force often used human skin with constant mechanical properties. However, this study, for the first time, investigates the combined effect of human age (29–68 years) and other variables such as insertion velocity (3 and 4.5 m/s), material (poly(glycolic acid) (PGA), Vectra MT-1300, and Zeonor 1060R) and geometry (cone-shaped and tapered cone-shaped) on insertion force using finite element analysis (FEA). The results show that insertion force increases significantly with age due to higher stratum corneum (SC) stiffness and failure criteria. For example, for a PGA cone-shaped microneedle at 4.5 m/s, the insertion force is 111.56%, 64.09%, 36.46%, and 10.52% higher for individuals aged 68, 53, 41, and 33 years, respectively, compared to 29 years. Microneedle material also significantly affects insertion force, with stiffer materials requiring less force to penetrate the SC. Cone-shaped microneedles exhibit lower insertion forces than tapered cone-shaped designs due to their smaller tip angle. Increasing insertion velocity substantially reduces the insertion force, with higher velocity having a more evident effect than changes in microneedle geometry. Finally, stress distribution within the microneedle and skin deformation are evaluated.

Keywordsfinite element analysis; human age; insertion velocity; microneedle geometry; polymeric microneedle
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020401706. Numerical modelling and mechanical characterisation
401707. Solid mechanics
400303. Biomechanical engineering
401609. Polymers and plastics
Byline AffiliationsSchool of Engineering
Centre for Future Materials
Institute for Advanced Engineering and Space Sciences
University of the Sunshine Coast
Permalink -

https://research.usq.edu.au/item/zz175/age-dependent-finite-element-analysis-of-microneedle-penetration-into-human-skin-influence-of-insertion-velocity-and-microneedle-s-geometry-and-material

  • 4
    total views
  • 1
    total downloads
  • 4
    views this month
  • 1
    downloads this month

Export as

Related outputs

Microneedle-based biosensor for rapid interstitial fluid extraction and on-site glucose detection
Saifullah, Khaled Mohammed. 2025. Microneedle-based biosensor for rapid interstitial fluid extraction and on-site glucose detection. PhD by Publication Doctor of Philosophy. University of Southern Queensland. https://doi.org/10.26192/zyw11
Micro-vibration assisted dual-layer spiral microneedles to rapidly extract dermal interstitial fluid for minimally invasive detection of glucose
Saifullah, Khaled Mohammed, Mushtaq, Asim, Azarikhah, Pouria, Prewett, Philip D., Davies, Graham J. and Faraji Rad, Zahra. 2025. "Micro-vibration assisted dual-layer spiral microneedles to rapidly extract dermal interstitial fluid for minimally invasive detection of glucose." Microsystems and Nanoengineering. 11 (1). https://doi.org/10.1038/s41378-024-00850-x
Synthesis-free swellable hydrogel microneedles for rapid interstitial fluid extraction and on-site glucose detection via an electrochemical biosensor system
Saifullah, Khaled Mohammed, Azarikhah, Pouria and Faraji Rad, Zahra Faraji. 2025. "Synthesis-free swellable hydrogel microneedles for rapid interstitial fluid extraction and on-site glucose detection via an electrochemical biosensor system." Materials Today Chemistry. 45. https://doi.org/10.1016/j.mtchem.2025.102661
Mechanics of dissolving microneedles insertion into the skin: Finite element and experimental analyses
Babapour, Fatemeh, Faraji Rad, Zahra and Ganji, Fariba. 2024. "Mechanics of dissolving microneedles insertion into the skin: Finite element and experimental analyses." Journal of Applied Polymer Science. 141 (38). https://doi.org/10.1002/app.55973
The advantages of microneedle patches compared to conventional needle-based drug delivery and biopsy devices in medicine
Reinke, Alissa, Whiteside, Eliza J, Windus, Louisa, Desai, Devang, Stehr, Emma and Faraji Rad, Zahra. 2024. "The advantages of microneedle patches compared to conventional needle-based drug delivery and biopsy devices in medicine." Biomedical Engineering Advances. 8. https://doi.org/10.1016/j.bea.2024.100127
Influence of Low-Frequency Vibration and Skin Strain on Insertion Mechanics and Drug Diffusion of PVA/PVP Dissolving Microneedles
Ebrahiminejad, Vahid, Malek-Khatabi, Atefeh and Faraji Rad, Zahra. 2024. "Influence of Low-Frequency Vibration and Skin Strain on Insertion Mechanics and Drug Diffusion of PVA/PVP Dissolving Microneedles." Advanced Materials Technologies. 9 (4). https://doi.org/10.1002/admt.202301272
Botulinum toxin A dissolving microneedles for hyperhidrosis treatment: design, formulation and in vivo evaluation
Malek-Khatabi, Atefeh, Rad-Malekshahi, Mazda, Shafiei, Morvarid, Sharifi, Fatemeh, Motasadizadeh, Hamidreza, Ebrahiminejad, Vahid, Rad-Malekshahi, Mazdak, Akbarijavar, Hamid and Faraji Rad, Zahra. 2023. "Botulinum toxin A dissolving microneedles for hyperhidrosis treatment: design, formulation and in vivo evaluation." Biomaterials Science. 11 (24), pp. 7784-7804. https://doi.org/10.1039/d3bm01301d
The role of microneedles in the healing of chronic wounds
Ghiyasi, Yasaman, Prewett, Philip D, Davies, Graham J and Faraji Rad, Zahra. 2023. "The role of microneedles in the healing of chronic wounds." International Journal of Pharmaceutics. 641. https://doi.org/10.1016/j.ijpharm.2023.123087
Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery
Malek-Khatabi, A., Razavi, M.S., Abdollahi, A., Rahimzadeghan, M., Moammeri, F., Sheikhi, M., Tavakoli, M., Rad-Malekshahi, M. and Faraji Rad, Z.. 2023. "Recent progress in PLGA-based microneedle-mediated transdermal drug and vaccine delivery." Biomaterials Science. 11 (16), pp. 5390-5409. https://doi.org/10.1039/D3BM00795B
Microneedle patches – the future of drug delivery and vaccination?
Faraji Rad, Zahra, Prewett, Philip D. and Davies, Davies. 2023. "Microneedle patches – the future of drug delivery and vaccination?" Beilstein Journal of Nanotechnology. 14, pp. 494-495. https://doi.org/10.3762/bjnano.14.40
Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors
Saifullah, Khaled Mohammed and Faraji Rad, Zahra. 2023. "Sampling Dermal Interstitial Fluid Using Microneedles: A Review of Recent Developments in Sampling Methods and Microneedle-Based Biosensors." Advanced Materials Interfaces. 10 (10). https://doi.org/10.1002/admi.202201763
Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and its Applications as Substrates for Humidity Sensors
Liu, Lei, Xu, Xiaodong, Zhu, Menghe, Cui, Xihua, Feng, Jiabing, Faraji Rad, Zahra, Wang, Hao and Song, Pingan. 2023. "Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and its Applications as Substrates for Humidity Sensors." Advanced Materials Technologies. https://doi.org/10.1002/admt.202201414
Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery
Malek-Khatabi, Atefeh, Faraji Rad, Zahra, Rad-Malekshahi, Mazda and Akbarijavar, Hamid. 2023. "Development of dissolvable microneedle patches by CNC machining and micromolding for drug delivery." Materials Letters. 330, pp. 1-6. https://doi.org/10.1016/j.matlet.2022.133328
Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives
Faraji Rad, Zahra. 2023. "Microneedle Technologies for Food and Crop Health: Recent Advances and Future Perspectives." Advanced Engineering Materials. 25 (4). https://doi.org/10.1002/adem.202201194
Fabrication and testing of polymer microneedles for transdermal drug delivery
Ebrahiminejad, Vahid, Faraji Rad, Zahra, Prewett, Philip D. and Davies, Graham J.. 2022. "Fabrication and testing of polymer microneedles for transdermal drug delivery." Beilstein Journal of Nanotechnology. 13, pp. 629-640. https://doi.org/10.3762/bjnano.13.55
Design, Development, and Testing of Polymeric Microblades: A Novel Design of Microneedles for Biomedical Applications
Ebrahiminejad, Vahid and Faraji Rad, Zahra. 2022. "Design, Development, and Testing of Polymeric Microblades: A Novel Design of Microneedles for Biomedical Applications." Advanced Materials Interfaces. 9 (29). https://doi.org/10.1002/admi.202201115
Microneedle Arrays for Drug Delivery and Diagnostics: Toward an Optimized Design, Reliable Insertion, and Penetration
Ebrahiminejad, Vahid, Prewett, Philip D., Davies, Graham J. and Faraji Rad, Zahra. 2022. "Microneedle Arrays for Drug Delivery and Diagnostics: Toward an Optimized Design, Reliable Insertion, and Penetration." Advanced Materials Interfaces. 9 (6), pp. 1-26. https://doi.org/10.1002/admi.202101856
Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles
Faraji Rad, Zahra, Prewett, Philip D. and Davies, Graham J.. 2022. "Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles." Additive Manufacturing. 56, pp. 1-14. https://doi.org/10.1016/j.addma.2022.102953
Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques." Manufacturing Letters. 30, pp. 39-43. https://doi.org/10.1016/j.mfglet.2021.10.007
High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays." Microsystems and Nanoengineering. 7 (1), pp. 1-17. https://doi.org/10.1038/s41378-021-00298-3
An overview of microneedle applications, materials, and fabrication methods
Faraji Rad, Zahra, Prewett, Philip and Davies, Graham. 2021. "An overview of microneedle applications, materials, and fabrication methods." Beilstein Journal of Nanotechnology. 12, pp. 1034-1046. https://doi.org/10.3762/bjnano.12.77
High-fidelity replication of thermoplastic microneedles with open microfluidic channels
Faraji Rad, Zahra, Nordon, Robert E., Anthony, Carl J., Bilston, Lynne, Prewett, Philip D., Arns, Ji-Youn, Arns, Christoph H., Zhang, Liangchi and Davies, Graham J.. 2017. "High-fidelity replication of thermoplastic microneedles with open microfluidic channels." Microsystems and Nanoengineering. 3, pp. 1-11. https://doi.org/10.1038/micronano.2017.34
Carbon-based nanostructures for cancer therapy and drug delivery applications
Bagheri, Babak, Surwase, Sachin S., Lee, Su Sam, Park, Heewon, Faraji Rad, Zahra, Trevaskis, Natalie L. and Kim, Yeu-Chun. 2022. "Carbon-based nanostructures for cancer therapy and drug delivery applications." Journal of Materials Chemistry B. 10 (48), pp. 9944-9967. https://doi.org/10.1039/d2tb01741e
A roof cavability classification system and its use for estimation of main caving interval in longwall mining
Mohammadi, Sodjad, Ataei, Mohammad, Kakaie, Reza, Mirzaghorbanali, Ali, Faraji Rad, Zahra and Aziz, Naj. 2020. "A roof cavability classification system and its use for estimation of main caving interval in longwall mining." Aziz, Naj and Kininmonth, Bob (ed.) 2020 Coal Operators' Conference. Wollongong, Australia 18 - 20 Feb 2019 Wollongong, Australia.
Microfluidic devices and fabrication
Faraji Rad, Zahra, Nordon, Robert, Davies, Graham, Anthony, Carl john and Prewett, Philip. 2020. Microfluidic devices and fabrication. 10850082