Basin management inspiration from impacts of alternating dry and wet conditions on water production and carbon uptake in Murray-Darling Basin
Article
Article Title | Basin management inspiration from impacts of alternating dry and wet conditions on water production and carbon uptake in Murray-Darling Basin |
---|---|
ERA Journal ID | 3551 |
Article Category | Article |
Authors | Lu, Zhixiang (Author), Feng, Qi (Author), Wei, Yongping (Author), Zhao, Yan (Author), Deo, Ravinesh C. (Author), Xie, Jiali (Author), Zhou, Sha (Author), Zhu, Meng (Author) and Xu, Min (Author) |
Journal Title | Science of the Total Environment |
Journal Citation | 851 (Part 2), pp. 1-8 |
Article Number | 158359 |
Number of Pages | 8 |
Year | 2022 |
Publisher | Elsevier |
Place of Publication | Netherlands |
ISSN | 0048-9697 |
1879-1026 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.scitotenv.2022.158359 |
Web Address (URL) | https://www.sciencedirect.com/science/article/pii/S0048969722054584 |
Abstract | The impacts of alternating dry and wet conditions on water production and carbon uptake at different scales remain unclear, which limits the integrated management of water and carbon. We quantified the response of runoff efficiency (RE) and plant water-use efficiency (PWUE) to a typical shift from dry to wet episode of 2003–2014 in Australia's Murray-Darling basin using good and specific data products for local application, including Australian Water Availability Project, Penman-Monteith-Leuning Evapotranspiration V2 product, MODIS MCD12Q1 V6 Land Cover Type and MODIS MOD17A3 V055 GPP product. The results show that there are significant power function relationships between RE and precipitation for basin and all ecosystems, while the PWUE had a negative quadratic correlation with precipitation and satisfied the significance levels of 0.05 for basin and the ecosystems except the grassland and cropland. The shrubs can achieve the best water production and carbon uptake under dry conditions, while the evergreen broadleaf trees and evergreen needleleaf trees can obtain the best water production and carbon uptake in wet conditions, respectively. These findings help integrated basin management for balancing water resource production and climate change mitigation. |
Keywords | water production; carbon uptake; alternating dry and wet conditions; terrestrial system; sustainable development |
ANZSRC Field of Research 2020 | 410404. Environmental management |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Chinese Academy of Sciences, China |
University of Queensland | |
School of Sciences | |
Beijing Normal University, China | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q7qx5/basin-management-inspiration-from-impacts-of-alternating-dry-and-wet-conditions-on-water-production-and-carbon-uptake-in-murray-darling-basin
81
total views2
total downloads0
views this month0
downloads this month