Deep Learning Neural Networks Trained with MODIS Satellite-Derived Predictors for Long-Term Global Solar Radiation Prediction
Article
Article Title | Deep Learning Neural Networks Trained with MODIS Satellite-Derived Predictors for Long-Term Global Solar Radiation Prediction |
---|---|
ERA Journal ID | 123161 |
Article Category | Article |
Authors | Ghimire, Sujan (Author), Deo, Ravinesh C. (Author), Raj, Nawin (Author) and Mi, Jianchun (Author) |
Journal Title | Energies |
Journal Citation | 12 (12), pp. 1-42 |
Article Number | 2407 |
Number of Pages | 42 |
Year | 2019 |
Publisher | MDPI AG |
Place of Publication | Switzerland |
ISSN | 1996-1073 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/en12122407 |
Web Address (URL) | https://www.mdpi.com/1996-1073/12/12/2407 |
Abstract | Solar energy predictive models designed to emulate the long-term (e.g., monthly) global solar radiation (GSR) trained with satellite-derived predictors can be employed as decision tenets in the exploration, installation and management of solar energy production systems in remote and inaccessible solar-powered sites. In spite of a plethora of models designed for GSR prediction, deep learning, representing a state-of-the-art intelligent tool, remains an attractive approach for renewable energy exploration, monitoring and forecasting. In this paper, algorithms based on deep belief networks and deep neural networks are designed to predict long-term GSR. Deep learning algorithms trained with publicly-accessible Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data are tested in Australia’s solar cities to predict the monthly GSR: single hidden layer and ensemble models. The monthly-scale MODIS-derived predictors (2003–2018) are adopted, with 15 diverse feature selection approaches including a Gaussian Emulation Machine for sensitivity analysis used to select optimal MODIS-predictor variables to simulate GSR against ground-truth values. Several statistical score metrics are adopted to comprehensively verify surface GSR simulations to ascertain the practicality of deep belief and deep neural networks. In the testing phase, deep learning models generate significantly lower absolute percentage bias (≤3%) and high Kling–Gupta efficiency (≥97.5%) values compared to the single hidden layer and ensemble model. This study ascertains that the optimal MODIS input variables employed in GSR prediction for solar energy applications can be relatively different for diverse sites, advocating a need for feature selection prior to the modelling of GSR. The proposed deep learning approach can be adopted to identify solar energy potential proactively in locations where it is impossible to install an environmental monitoring data acquisition instrument. Hence, MODIS and other related satellite-derived predictors can be incorporated for solar energy prediction as a strategy for long-term renewable energy exploration. |
Keywords | global solar radiation; energy security; deep learning; deep belief network; deep neural network; solar cities in Australia |
ANZSRC Field of Research 2020 | 460510. Recommender systems |
401703. Energy generation, conversion and storage (excl. chemical and electrical) | |
490304. Optimisation | |
Byline Affiliations | School of Agricultural, Computational and Environmental Sciences |
Peking University, China | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q54v0/deep-learning-neural-networks-trained-with-modis-satellite-derived-predictors-for-long-term-global-solar-radiation-prediction
Download files
Published Version
Ghimire Deo et al 2019 - Deep Learning Neural Networks Trained with MODIS for global solar radiation forecasting.pdf | ||
License: CC BY 4.0 | ||
File access level: Anyone |
319
total views167
total downloads6
views this month0
downloads this month