An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems
Article
Article Title | An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems |
---|---|
ERA Journal ID | 3551 |
Article Category | Article |
Authors | Yin, Xinwei (Author), Feng, Qi (Author), Li, Yan (Author), Deo, Ravinesh C. (Author), Liu, Wei (Author), Zhu, Meng (Author), Zheng, Xinjun (Author) and Liu, Ran (Author) |
Journal Title | Science of the Total Environment |
Journal Citation | 806 (2), pp. 1-20 |
Article Number | 150599 |
Number of Pages | 20 |
Year | 2022 |
Publisher | Elsevier |
Place of Publication | Netherlands |
ISSN | 0048-9697 |
1879-1026 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.scitotenv.2021.150599 |
Web Address (URL) | https://www.sciencedirect.com/science/article/pii/S0048969721056771 |
Abstract | In salt-affected and groundwater-fed oasis-desert systems, water and salt balance is critically important for stable coexistence of oasis-desert ecosystems, especially in the context of anthropogenic-induced over-development and perturbations due to climate variability that affects the sustainability of human-natural systems. Here, an investigation of the spatio-temporal variability of soil salinity and groundwater dynamics across four different hydrological regions in oasis-desert system is performed. An evaluation of the effects of soil salinization and groundwater degradation interplays on the coexistence of oasis-desert ecosystems in northwestern China is undertaken over 1995–2020, utilizing comprehensive measurements and ecohydrological modelling framework. We note that the process of salt migration and accumulation across different landscapes in oasis-desert system is reshaping, with soil salinization accelerating especially in water-saving agricultural irrigated lands. The continuous decline in groundwater tables, dramatic shifts in groundwater flow patterns and significant degradation of groundwater quality are occurring throughout the watershed. Worse so, a clear temporal-spatial relationship between soil salinization and groundwater degradation appearing to exacerbate the regional water-salt imbalance. Also, the eco-environmental flows are reaching to their limit with watershed closures, although these progressions were largely hidden by regional precipitation and streamflow variability. The oasis-desert ecosystems tend to display bistable dynamics with two preferential configurations of bare and vegetated soils, and soil salinization and groundwater degradation interplays are causing catastrophic shift in the oasis-desert ecosystems. The results highlight the importance of regional adaptive water and salt management to maintain the coexistence of oasis-desert ecosystems in arid areas. |
Keywords | oasis-desert ecosystems; soil salinization; groundwater dynamics; interplay; adaptive water-salt management |
ANZSRC Field of Research 2020 | 410404. Environmental management |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | University of Chinese Academy of Sciences, China |
Chinese Academy of Sciences, China | |
Zhejiang A & F University, China | |
School of Sciences | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q6qz2/an-interplay-of-soil-salinization-and-groundwater-degradation-threatening-coexistence-of-oasis-desert-ecosystems
167
total views5
total downloads4
views this month0
downloads this month