The Emerging Role of Hypoxic Training for the Equine Athlete
Article
Davie, Allan, Beavers, Rosalind, Hargitaiová, Kristýna and Denham, Joshua. 2023. "The Emerging Role of Hypoxic Training for the Equine Athlete." Animals. 13 (17). https://doi.org/10.3390/ani13172799
Article Title | The Emerging Role of Hypoxic Training for the Equine Athlete |
---|---|
ERA Journal ID | 200143 |
Article Category | Article |
Authors | Davie, Allan, Beavers, Rosalind, Hargitaiová, Kristýna and Denham, Joshua |
Journal Title | Animals |
Journal Citation | 13 (17) |
Article Number | 2799 |
Number of Pages | 11 |
Year | 2023 |
Publisher | MDPI AG |
Place of Publication | Switzerland |
ISSN | 2076-2615 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/ani13172799 |
Web Address (URL) | https://www.mdpi.com/2076-2615/13/17/2799 |
Abstract | This paper provides a comprehensive discussion on the physiological impacts of hypoxic training, its benefits to endurance performance, and a rationale for utilizing it to improve performance in the equine athlete. All exercise-induced training adaptations are governed by genetics. Exercise prescriptions can be tailored to elicit the desired physiological adaptations. Although the application of hypoxic stimuli on its own is not ideal to promote favorable molecular responses, exercise training under hypoxic conditions provides an optimal environment for maximizing physiological adaptations to enhance endurance performance. The combination of exercise training and hypoxia increases the activity of the hypoxia-inducible factor (HIF) pathway compared to training under normoxic conditions. Hypoxia-inducible factor-1 alpha (HIF-1?) is known as a master regulator of the expression of genes since over 100 genes are responsive to HIF-1?. For instance, HIF-1-inducible genes include those critical to erythropoiesis, angiogenesis, glucose metabolism, mitochondrial biogenesis, and glucose transport, all of which are intergral in physiological adaptations for endurance performance. Further, hypoxic training could conceivably have a role in equine rehabilitation when high-impact training is contraindicated but a quality training stimulus is desired. This is achievable through purpose-built equine motorized treadmills inside commercial hypoxic chambers. © 2023 by the authors. |
Keywords | equine; horse; hypoxia; mitochondria; hypoxia-inducible factor; normobaric; thoroughbred |
ANZSRC Field of Research 2020 | 300902. Veterinary anatomy and physiology |
300999. Veterinary sciences not elsewhere classified | |
420702. Exercise physiology | |
Byline Affiliations | Australian Equine Racing and Research Centre, Australia |
Southern Cross University | |
Cornell University, United States | |
School of Health and Medical Sciences | |
Centre for Health Research |
Permalink -
https://research.usq.edu.au/item/z2594/the-emerging-role-of-hypoxic-training-for-the-equine-athlete
Download files
27
total views24
total downloads1
views this month1
downloads this month