On potential causes for an under-estimated global ocean heat content trend in CMIP3 models
Article
Article Title | On potential causes for an under-estimated global ocean heat content trend in CMIP3 models |
---|---|
ERA Journal ID | 1874 |
Article Category | Article |
Authors | Cai, W., Cowan, T., Arblaster, J. M. and Wijffels, S. |
Journal Title | Geophysical Research Letters |
Journal Citation | 37 (17) |
Number of Pages | 6 |
Year | 2010 |
Publisher | John Wiley & Sons |
Place of Publication | United States |
ISSN | 0094-8276 |
1944-8007 | |
Digital Object Identifier (DOI) | https://doi.org/10.1029/2010GL044399 |
Web Address (URL) | https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2010GL044399 |
Abstract | [1] Trends in global oceanic heat content (OHC) over the late 20th century as simulated by climate models that incorporate all radiative forcing factors are smaller than the observed, but the causes are not clear. Given the cooling effect associated with increasing anthropogenic aerosols and natural forcing (i.e., volcanic aerosols), we examine their respective roles in the simulated global OHC trend and the associated ocean temperature structure, using targeted experiments from two models, designed to separate the individual impacts of these forcing components. We show that it is more likely that the indirect effect of aerosols, not volcanic aerosols alone, is the reason for the bulk of weaker modelled OHC trends. Further, anthropogenic aerosols are essential for simulating the structure of the observed temperature changes, including a concentrated cooling in the Southern Hemisphere subtropical latitudes, consistent with a more stable global Conveyer, a greater strengthening of the subtropical gyre circulation, and a stronger Southern Annular Mode trend in targeted experiments with anthropogenic aerosol forcing. |
ANZSRC Field of Research 2020 | 370201. Climate change processes |
370803. Physical oceanography | |
370299. Climate change science not elsewhere classified | |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia |
National Center for Atmospheric Research, United States | |
Australian Bureau of Meteorology |
https://research.usq.edu.au/item/z09v8/on-potential-causes-for-an-under-estimated-global-ocean-heat-content-trend-in-cmip3-models
45
total views1
total downloads2
views this month0
downloads this month