Theoretical and experimental investigation of SI engine performance and exhaust emissions using ethanol-gasoline blended fuels
Paper
Paper/Presentation Title | Theoretical and experimental investigation of SI engine performance and exhaust emissions using ethanol-gasoline blended fuels |
---|---|
Presentation Type | Paper |
Authors | Yusaf, Talal (Author), Najafi, G. (Author) and Buttsworth, David (Author) |
Editors | Abidin, Izham Bin Datuk Zainal |
Journal or Proceedings Title | Proceedings of the 3rd International Conference on Energy and Environment (ICEE 2009) |
ERA Conference ID | 60303 |
Number of Pages | 7 |
Year | 2009 |
Place of Publication | Selangor, Malaysia |
ISBN | 9781424451449 |
9781424451456 | |
Digital Object Identifier (DOI) | https://doi.org/10.1109/ICEENVIRON.2009.5398648 |
Web Address (URL) of Paper | http://icee2009.uniten.edu.my/conference/index.php/ICEE/ICEE2009/schedConf/schedule |
Conference/Event | 3rd International Conference on Energy and Environment (ICEE 2009): Advancement Towards Global Sustainability |
IASME/WSEAS International Conference on Energy and Environment | |
Event Details | 3rd International Conference on Energy and Environment (ICEE 2009): Advancement Towards Global Sustainability Event Date 07 to end of 08 Dec 2009 Event Location Malacca, Malaysia |
Event Details | IASME/WSEAS International Conference on Energy and Environment |
Abstract | In this study, potato waste bioethanol was evaluated as an alternative fuel for gasoline engines. The pollutant emissions and performance of a four stroke SI engine operating on ethanol-gasoline blends has been investigated experimentally and theoretically. In the theoretical study, a quasi-dimensional SI engine cycle model has been adapted for spark ignition engines running on gasoline-ethanol blends. A mathematical model using Matlab software was developed using the first law of thermodynamics and conservation equations to predict the SI engine performance for different blend ratios. The model was also used to evaluate the engine emissions and the mechanical and heat losses in the engine which is not included in this study. Experiments were performed with the blends containing 5, 10, 15 and 20 vol% ethanol. The results show that increasing ethanol-gasoline blended will marginally increase the power and torque output of the engine. For ethanol blends it was found that the brake specific fuel consumption (bsfc) was decreased using 5% and 10% ethanol while the brake thermal efficiency and the volumetric efficiency were increased. Exhaust gas emissions were measured and analyzed for unburned hydrocarbons (UHC), carbon dioxide (CO2), carbon monoxide (CO), Oxygen (O2) and Oxide of Nitrogen NOx at engine speeds ranging from 1000 to 5000 rpm. The concentration of CO and UHC emissions in the exhaust pipe were found to be decreased when ethanol blends were introduced. The concentration of CO2 and NOx was found to be increased when ethanol is introduced. Results obtained from both theoretical and experimental studies were compared. The simulation results have been validated against data from experiments and it results to a good agreement between the trends in the predicted and experimental results. |
Keywords | biodiesel engine |
ANZSRC Field of Research 2020 | 400203. Automotive mechatronics and autonomous systems |
400201. Automotive combustion and fuel engineering | |
400202. Automotive engineering materials | |
Public Notes | © 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. |
Byline Affiliations | Department of Mechanical and Mechatronic Engineering |
Tarbiat Modares University, Iran | |
University of Oxford, United Kingdom |
https://research.usq.edu.au/item/9z6y2/theoretical-and-experimental-investigation-of-si-engine-performance-and-exhaust-emissions-using-ethanol-gasoline-blended-fuels
Download files
2447
total views1163
total downloads2
views this month1
downloads this month