Triacylglycerol-lowering effect of docosahexaenoic acid is not influenced by single-nucleotide polymorphisms involved in lipid metabolism in humans
Article
Article Title | Triacylglycerol-lowering effect of docosahexaenoic acid is not influenced by single-nucleotide polymorphisms involved in lipid metabolism in humans |
---|---|
ERA Journal ID | 15273 |
Article Category | Article |
Authors | AbuMweis, Suhad S. (Author), Panchal, Sunil K. (Author) and Jones, Peter J. H. (Author) |
Journal Title | Lipids |
Journal Citation | 53 (9), pp. 897-908 |
Number of Pages | 12 |
Year | 2018 |
Place of Publication | Germany |
ISSN | 0024-4201 |
1558-9307 | |
Digital Object Identifier (DOI) | https://doi.org/10.1002/lipd.12096 |
Web Address (URL) | https://www.ncbi.nlm.nih.gov/pubmed/30407633 |
Abstract | The triacylglycerol (TAG)-lowering effects of long-chain n-3 fatty acids, and in particular docosahexaenoic acid (DHA), are well documented, although these effects manifest large interindividual variability. The objective of this secondary analysis is to investigate whether common single-nucleotide polymorphisms (SNP) in genes involved in DHA synthesis and TAG metabolism are associated with the responsiveness of blood lipids, lipoprotein, and apolipoprotein concentration to dietary treatment by DHA supplied in high-oleic canola oil (HOCO). In a randomized, crossover-controlled feeding trial, 129 subjects with metabolic syndrome received high-oleic canola oil (HOCO) and high-oleic canola oil supplemented with DHA (HOCO-DHA), each for 4 weeks. During the HOCO-DHA phase, the intake of DHA ranged from 1 to 2.5 g/day. The subjects were genotyped for apolipoprotein E (APOE) isoforms, and SNP including FADS1-rs174561, FADS2-rs174583, ELOVL2-rs953413, ELOVL5-rs2397142, CETP-rs5882, SCD1-rs2234970, PPARA-rs6008259, and LIPF-rs814628 were selected as important genes controlling fatty acid metabolism. Overall, consumption of HOCO-DHA oil reduced blood concentrations of TAG by 24% compared to HOCO oil. The reduction in TAG was independent of genetic variations in the studied genes. Similarly, no treatment-by-gene interactions were evident in the response to other lipids, lipoproteins, or apolipoproteins to DHA supplementation. Nevertheless, a lower interindividual variation in the TAG response to DHA supplementation compared to other studies was observed in this analysis. The TAG-lowering effect of a supplemental body-weight-based dose of DHA was not influenced by genetic variations in APOE, FADS1, FADS2, ELOVL2, ELOVL5, CETP, SCD1, PPARA, and LIPF. |
Keywords | adults; docosahexenoic acid; genetics; lLipoprotein; single-nucleotide polymorphism |
ANZSRC Field of Research 2020 | 321004. Nutritional science |
321401. Basic pharmacology | |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Hashemite University, Jordan |
Institute for Agriculture and the Environment | |
University of Manitoba, Canada | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q4z24/triacylglycerol-lowering-effect-of-docosahexaenoic-acid-is-not-influenced-by-single-nucleotide-polymorphisms-involved-in-lipid-metabolism-in-humans
188
total views9
total downloads2
views this month0
downloads this month