Ultrafast and Cost-Effective Fabrication of High-Performance Carbon-Based Flexible Thermoelectric Hybrid Films and Their Devices
Article
Article Title | Ultrafast and Cost-Effective Fabrication of High-Performance Carbon-Based Flexible Thermoelectric Hybrid Films and Their Devices |
---|---|
ERA Journal ID | 40638 |
Article Category | Article |
Authors | Sun, Shuai, Shi, Xiao-Lei, Li, Meng Li, Wu, Ting, Yin, Liangcao, Wang, Dezhuang, Liu, Qingfeng and Chen, Zhi-Gang |
Journal Title | ACS Applied Materials and Interfaces |
Journal Citation | 15 (21), p. 25650–25660 |
Number of Pages | 11 |
Year | 2023 |
Publisher | American Chemical Society |
Place of Publication | United States |
ISSN | 1944-8244 |
1944-8252 | |
Digital Object Identifier (DOI) | https://doi.org/10.1021/acsami.3c05226 |
Web Address (URL) | https://pubs.acs.org/doi/full/10.1021/acsami.3c05226 |
Abstract | Due to their cost-effectiveness and industry-scale feasibility, carbon-based composites have been considered to be promising thermoelectric materials for low-grade power generation. However, current fabrications for carbon-based composites are time-consuming, and their thermoelectric properties are still low. Herein, we develop an ultrafast and cost-effective hot-pressing method to fabricate a novel carbon-based hybrid film, which consists of ionic liquid/phenolic resin/carbon fiber/expanded graphite. This method only costs no more than 15 min. We found that the expanded graphite as the major component enables high flexibility and the introduction of phenolic resin and carbon fiber enhances the shear resistance and toughness of the film, while the ion-induced carrier migration contributes to a high power factor of 38.7 μW m–1 K–2 at 500 K in the carbon-based hybrid film. After the comparison based on the ratios between the power factor with fabrication time and cost among the current conventional carbon-based thermoelectric composites, our hybrid films show the best cost-effective property. Besides, a flexible thermoelectric device, assembled by the as-designed hybrid films, shows a maximum output power density of 79.3 nW cm–2 at a temperature difference of 20 K. This work paves a new way to fabricate cost-effective and high-performance carbon-based thermoelectric hybrids with promising application potential. |
Keywords | thermoelectric ; composite film ; ionic liquid ; flexible ; cost-effective; carbon |
Related Output | |
Is part of | Design and performance of high-efficiency flexible thermoelectric Mmaterials and devices |
ANZSRC Field of Research 2020 | 4016. Materials engineering |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
This article is part of a UniSQ Thesis by publication. See Related Output. | |
Byline Affiliations | Centre for Future Materials |
Queensland University of Technology | |
Nanjing Tech University, China |
https://research.usq.edu.au/item/z1w52/ultrafast-and-cost-effective-fabrication-of-high-performance-carbon-based-flexible-thermoelectric-hybrid-films-and-their-devices
41
total views0
total downloads1
views this month0
downloads this month